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ABSTRACT 

 

In this investigation, the phenomenon of global solar radiation was 

meticulously modeled utilizing artificial neural networks (ANNs), drawing 

upon a comprehensive dataset spanning a decade of solar radiation 

measurements within the Mersin province. Recognized for its considerable 

solar energy prospects, Mersin serves as an ideal locale for establishing a 

robust scientific framework for extended forecasting endeavors. During the 

modeling procedure, pivotal input variables such as solar altitude angle, 

wind speed, and dry-bulb temperature were employed, culminating in the 

direct solar radiation value as the output variable. The model's formulation 

was executed through the MATLAB Neural Fitting Tool (nfttool), wherein 

the dataset was systematically partitioned into 75% for training, 15% for 

validation, and 10% for testing purposes. A configuration featuring 30 

neurons within the hidden layer was adopted, and the Levenberg-Marquardt 

backpropagation algorithm was implemented. This algorithm significantly 

bolstered the model's efficacy, facilitating rapid convergence alongside 

heightened accuracy. The findings underscored that the correlation 

coefficient (R) values exceeded 0.90 across both the training and testing 

datasets. Such elevated performance levels attest to the ANN's proficiency in 

effectively capturing nonlinear dynamics. This modeling endeavor not only 

provides a more adaptable and precise methodology for predicting solar 

radiation but also surpasses the limitations of conventional approaches. The 

inherent flexibility and accuracy afforded by this technique hold strategic 

implications for energy planning, solar power installation design, and the 

optimization of renewable energy initiatives. Particularly in locales 

characterized by abundant solar energy potential, such as the Mersin 

province, this ANN-centric modeling strategy emerges as a pivotal 

contributor to sustainable energy advancements. 
 

Keywords –Global Solar Radiation, Artificial Neural Networks (ANNs), Levenberg-

Marquardt Algorithm, Solar Energy Modeling, Mersin. 

 

 

INTRODUCTION 

 

As delineated within the present examination, the modeling of long-

term global solar radiation specific to the Mersin province via artificial 

neural networks has been meticulously explored. This investigation 

underscores the paramount significance of accurately predicting solar 

radiation, a factor of critical relevance across a multitude of domains, 

including the optimized utilization of renewable energy resources, strategic 

energy planning, the operational efficiency of photovoltaic systems, and 

broader climate change assessments. The primary aim of this study is to 
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intricately model the prolonged solar radiation data pertinent to the region 

through the application of artificial neural networks, thereby establishing a 

robust foundation for forthcoming energy strategies and scientific inquiries 

derived from the outcomes of this methodology. The proficiency of artificial 

neural networks in encapsulating nonlinear relationships inherent in solar 

radiation modeling confers a notable enhancement in accuracy relative to 

conventional methodologies. In a locale such as Mersin, characterized by its 

abundant solar energy potential, this innovative approach renders a 

substantial contribution towards the effective harnessing of energy resources 

and the augmentation of the region's renewable energy capabilities. 

The prediction of solar radiation plays a pivotal role in enhancing the 

efficacy of renewable energy utilization and in assessing the potential of 

solar energy resources. Within this paradigm, methodologies leveraging 

artificial neural networks (ANNs) have emerged as a formidable alternative 

to conventional techniques, markedly improving accuracy metrics. In light of 

this, an extensive review of literature pertaining to the modeling of long-

term global solar radiation specifically in the Mersin province has been 

conducted, emphasizing the diverse applications of ANNs alongside 

analogous techniques. In their seminal work, Voyant et al. (2010) scrutinized 

the efficacy of ANNs in forecasting solar radiation in remote locales, 

positing that a synergistic approach combining physical modeling with 

statistical methodologies can significantly enhance predictive precision. 

Likewise, Carles Martí Pérez and Gasque Albalate (2011) introduced an 

ANN-driven model for global radiation forecasting in regions lacking direct 

measurement apparatus, successfully augmenting the ANN's accuracy 

through the integration of ancillary data. Lauret et al. (2012) tackled the 

inherent non-stationarity present in solar radiation data series, endeavoring 

to derive stationary solar series via a Bayesian model committee, thereby 

contributing substantially to the field of time series analysis. Additionally, 

Bonanno et al. (2013) employed radial basis function neural networks 

(RBFNN) for the prediction of photovoltaic module electrical characteristics, 

achieving commendable outcomes under high irradiance conditions. In a 

similar vein, Yadav and Sethy (2018) underscored the significance of their 

developed ANN model for short-term solar radiation forecasting, particularly 

with respect to photovoltaic energy generation. Lastly, Ghazvinian et al. 

(2019) appraised a model predicated on support vector regression and 

particle swarm optimization, undertaking a comparative analysis of various 

ANN types, ultimately determining that radial basis neural networks yielded 

the most favorable results. 

In recent explorations of methodologies for solar radiation forecasting, 

the convergence of data integration techniques and machine learning 

paradigms has garnered considerable attention. Notably, Ahmadi et al. 

(2020) undertook a comparative analysis of artificial neural networks (ANN) 

alongside various machine learning modalities to assess the thermal efficacy 
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of photovoltaic-thermal solar collectors. In a parallel vein, Hoyos-Gómez et 

al. (2021) directed their efforts towards the short-term forecasting of global 

solar radiation amid conditions of incomplete data, achieving commendable 

outcomes through the application of time series analytics. Furthermore, 

Ordoñez Palacios et al. (2022) innovatively crafted a machine learning 

framework that amalgamates meteorological datasets with satellite imagery, 

asserting that this approach significantly enhances the decision-making 

frameworks pertinent to solar energy initiatives. Additionally, Nawab et al. 

(2023) juxtaposed empirical methodologies against artificial intelligence-

driven strategies, underscoring the critical nature of precise measurement 

and forecasting in solar radiation assessment. This comprehensive literature 

review elucidates the efficacy of artificial neural networks in the context of 

global solar radiation prediction and advocates for the viability of ANN-

centric modeling within regions endowed with high solar energy potential, 

such as Mersin province. The accumulated findings delineate the 

preeminence of ANN in elucidating nonlinear associations and propose an 

avant-garde approach to solar radiation forecasting. Collectively, these 

investigations illustrate that the ANN frameworks tailored for Mersin 

province are poised to yield substantial advancements in both regional 

energy policies and the broader scientific discourse. 

Through the comprehensive analyses undertaken at the regional level, 

this study endeavors to elucidate the merits of artificial neural networks in 

the prediction of global solar radiation, thus positioning itself as a pioneering 

contribution to the existing body of literature in this domain. The 

overarching framework of the investigation is comprised of a series of 

interrelated segments, which encompass an introductory discourse on the 

subject matter, foundational theoretical insights pertaining to solar radiation 

and the operational principles of artificial neural networks, a meticulous 

literature review, a detailed exposition of the research methodology 

employed, a thorough data analysis accompanied by resultant findings, and 

ultimately, a synthesis of conclusions alongside actionable 

recommendations. The insights garnered from this work are poised to enrich 

the ongoing dialogue surrounding the integration of advanced predictive 

models in solar radiation forecasting.  

 

 

SOLAR RADIATION AND ARTIFICIAL NEURAL NETWORKS 

(ANNs) 
 

As evidenced by the extensive body of research available, the role of 

solar radiation within the Earth's energy cycle is undeniably critical, 

underpinning both natural phenomena and various climatic occurrences. 

Furthermore, this radiation plays an indispensable role in an array of fields, 

encompassing climate change, agricultural productivity, energy generation, 
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and broader environmental dynamics. To quantify solar radiation accurately, 

a variety of instrumentation is employed, including but not limited to 

pyranometers, pyrheliometers, heliographs, shadow-band pyranometers, and 

sunshine recorders. The selection of these measurement tools is contingent 

upon the specific data requirements and the intended application of the 

gathered information. Such methodological diversity is essential for 

advancing our understanding of solar energy's multifaceted impacts on both 

ecological and human systems (Sengupta et al., 2021; Kumar et al., 2020; 

Ahmed et al., 2020). 

As illustrated in the extensive reviews conducted, the modeling and 

forecasting of solar radiation are pivotal in the architecture and functionality 

of renewable energy frameworks. It has become increasingly evident that 

dependable prediction methodologies are essential, particularly for the 

thorough assessment of solar energy systems, radiation budget analyses, and 

the operational efficacy of photovoltaic installations. Nevertheless, the 

establishment of such predictive techniques often hinges upon inputs that are 

prohibitively expensive. In this investigation, a comprehensive examination 

was undertaken to evaluate various existing prediction models, juxtaposing 

their performance against real-world data derived from operational solar 

energy systems. Furthermore, the implications of these predictive 

inaccuracies on the overall system efficiency, investment viability, and long-

term sustainability were meticulously scrutinized. The outcomes of this 

research are anticipated to furnish valuable insights for scholars and 

practitioners engaged in the enhancement of solar energy predictability while 

concurrently addressing the associated economic challenges. 

As can be observed from the extensive body of research conducted, 

the computational frameworks known as artificial neural networks (ANNs) 

have emerged as pivotal tools, inspired fundamentally by the architecture of 

biological neural networks. These intricate models encompass an input layer, 

one or more intermediate hidden layers, and a definitive output layer. Within 

this configuration, the input layer serves to aggregate the data, while the 

hidden layers adeptly capture the nonlinear interdependencies that exist 

between the inputs and the resulting outputs, culminating in the output layer 

which delivers the ultimate prediction or classification. In recent years, the 

proliferation of ANNs in various domains can be attributed to their 

remarkable proficiency in modeling complex and nonlinear relationships, 

coupled with their inherent ability to adapt seamlessly to evolving datasets. 

This technique has been effectively harnessed across a myriad of 

applications, including but not limited to pattern recognition, signal 

processing, financial forecasting, control systems, optimization, and 

regression analyses, as evidenced by the works of Goncu et al. (2021), 

Alizamir et al. (2020), Bozkurt et al. (2022), and Kassem et al. (2021). The 

ongoing exploration of ANNs continues to yield valuable insights, fostering 

advancements that resonate across multiple disciplines. 
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As evidenced by the extensive body of research conducted in the 

realm of solar radiation forecasting, artificial neural networks (ANNs) have 

emerged as a prevalent methodology within both environmental and energy 

sectors. These advanced computational techniques facilitate a more precise 

prediction of forthcoming solar radiation levels, drawing upon a 

comprehensive analysis of historical datasets. The modeling of solar 

radiation through such sophisticated means serves as a pivotal instrument for 

navigating the complexities of climate change and enhancing the efficacy of 

renewable energy infrastructures. Furthermore, the utilization of ANNs 

confers substantial advantages in diverse applications, encompassing the 

design and performance evaluation of solar energy systems, by providing 

cost-effective and adaptable solutions that stand in stark contrast to 

conventional methodologies (Ozturk, 2020). The insights gleaned from this 

approach are anticipated to significantly contribute to the ongoing discourse 

surrounding the optimization of renewable energy technologies. 

In light of the considerations presented, this investigation 

meticulously modeled the daily average solar radiation for the Mersin 

province through the application of artificial neural networks (ANNs), 

thereby presenting a methodology that transcends conventional techniques. 

This innovative approach not only enhances the landscape of energy 

planning but also significantly contributes to the advancement of sustainable 

energy solutions. The findings derived from this study are expected to serve 

as a valuable resource for stakeholders engaged in the pursuit of efficient 

energy management and the promotion of renewable energy initiatives. Such 

insights are deemed crucial for fostering a deeper understanding of solar 

energy dynamics in the region. 

 

The Role of Solar Radiation and Measurement Techniques  

As evidenced by the extensive body of research conducted, solar 

radiation emerges as the fundamental energy input from the sun to the Earth, 

exhibiting significant impacts across various domains, including climatic 

patterns, agricultural productivity, ecosystem dynamics, and energy 

generation capabilities. This underscores the paramount importance of 

precise measurement and thorough analysis of solar radiation, which are 

indispensable for the effective design of renewable energy systems and the 

comprehensive assessment of environmental processes. Such insights are 

crucial for advancing our understanding of the intricate interplay between 

solar energy and its multifaceted effects on both natural and human systems. 

As evidenced by the array of measurement instruments utilized in 

solar radiation assessment, devices such as pyranometers, pyrheliometers, 

and sunshine recorders play pivotal roles. Furthermore, the integration of 

ceilometers and mechanical-electronic sunshine recorders facilitates the 

measurement of critical parameters including sky cover and atmospheric 

optical depth. The resultant data garnered from these sophisticated devices is 
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initially acquired in a raw format, subsequently undergoing meticulous time 

correction methodologies to ensure analytical readiness. Nonetheless, it is 

imperative to acknowledge that the precision, financial implications, and 

user-friendliness of these measurement instruments exhibit considerable 

variability, contingent upon the specific application domain. 

As evidenced by the comprehensive analyses undertaken, the 

utilization of satellite-based solar radiation data stands out as a particularly 

advantageous alternative, particularly in scenarios where terrestrial 

measurement stations are conspicuously absent. Such satellite-derived data 

holds substantial promise for both grid-based solar radiation forecasting and 

validation endeavors. Nevertheless, it is imperative to acknowledge that 

inherent quality concerns and measurement inaccuracies associated with 

satellite data may compromise the reliability of the findings. Consequently, 

the advancement of predictive models leveraging satellite imagery emerges 

as a pivotal opportunity for enhancing the precision of solar radiation 

estimations. Contemporary satellites, in contrast to their predecessors, 

furnish data characterized by superior spatial and temporal resolution, thus 

conferring a notable benefit in the realm of solar radiation forecasting 

(Guijo-Rubio et al., 2020; Narvaez et al., 2021). 

As highlighted by the examination of various methodologies in the 

field, the assessment of solar radiation measurement techniques has 

demonstrated that the precision in data acquisition is paramount. 

Furthermore, the contemporary landscape reveals that these techniques are 

not merely confined to the realm of data collection; rather, they serve as vital 

instruments in strategic energy production planning and the formulation of 

early warning systems. In this regard, the synergistic implementation of 

satellite-based and ground-based measurement approaches emerges as a 

pivotal strategy, facilitating the optimization of energy generation processes 

while concurrently advancing the development of sustainable energy 

solutions. The insights gleaned from this multifaceted approach are expected 

to significantly influence ongoing research and practical applications in the 

renewable energy sector.  

 

Artificial Neural Networks  

As illustrated through the extensive research conducted on the 

application of Artificial Neural Networks (ANNs), it is apparent that these 

sophisticated artificial intelligence systems, which draw inspiration from the 

intricate architecture of the human brain, possess remarkable capabilities. 

Specifically, ANNs are adept at discerning patterns within data, thereby 

enabling them to model complex and nonlinear relationships with notable 

precision. Their versatility is evidenced by their successful implementation 

across a myriad of domains, including but not limited to finance, medicine, 

industry, and agriculture. The inherent flexibility and adaptability of ANNs 

stem primarily from their robust learning mechanisms, which empower them 
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to extract valuable insights from intricate datasets (Amaratunga et al., 2020; 

Montesinos et al., 2022). Such findings are anticipated to serve as a 

significant resource for researchers and practitioners seeking to harness the 

potential of ANNs in diverse applications. 

As evidenced by the extensive body of research conducted, artificial 

neural networks (ANNs) present a noteworthy advantage in the modeling of 

climatic behaviors and the forecasting of non-stationary datasets, particularly 

in the realm of solar radiation. The implementation of multi-layer ANNs in 

the prediction of solar radiation has garnered success across various 

domains, encompassing energy production forecasting, photovoltaic system 

applications, the operational performance of solar thermal collectors, as well 

as the prediction of both global and diffuse solar radiation. Such 

methodologies provide a formidable instrument for addressing complex 

phenomena while elucidating the intrinsic characteristics of data (Geetha et 

al., 2022; Mukhtar et al., 2022; Guo et al., 2024). The expansive 

applicability of ANNs underscores their burgeoning potential within solar 

radiation research, thereby playing a pivotal role in the quest for solutions to 

the pressing energy challenges of our time. 

In light of the advancements in computational methodologies, the 

utilization of artificial neural networks for solar radiation modeling has 

emerged as a markedly superior alternative to traditional statistical 

techniques. Their inherent capacity to discern non-linear dependencies and 

evaluate intricate frameworks enables the attainment of exceptional 

precision in forecasts pertaining to solar radiation. Consequently, this 

phenomenon positions artificial neural networks as an invaluable asset in the 

realm of solar radiation prediction, as evidenced by contemporary studies 

(Chiu et al., 2022; Movassagh et al., 2023). Through this lens, it becomes 

evident that the integration of such sophisticated modeling tools can 

significantly enhance the reliability and accuracy of solar energy 

assessments. 

The characteristics that set artificial neural networks apart from 

traditional methodologies are manifold: their capacity to model intricate 

nonlinear relationships, their independence from specific distributional 

assumptions, and their lack of a requisite predetermined input structure. 

Furthermore, they exhibit resilience against noise and the complexities 

inherent in variable interactions, allowing for adaptability to fluctuating 

meteorological conditions with minimal restrictions. As data accumulates, 

they possess the remarkable ability to enhance their performance, adeptly 

unraveling a multitude of relationships and variations. This inherent 

flexibility in managing extensive datasets underpins their significance 

(Movassagh et al., 2023; Markidis, 2021). Such advantages position artificial 

neural networks as indispensable instruments for solar radiation forecasting, 

particularly within regions endowed with substantial solar energy potential, 

exemplified by the Mersin province. Their distinctive capabilities lay a 
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robust groundwork for energy planning and the formulation of sustainable 

energy strategies. By capitalizing on their versatility and precision, ANN-

driven methodologies propel the domain of solar radiation prediction 

forward, rendering a meaningful contribution to both the scientific sphere 

and practical implementations, especially in areas abundant in solar 

resources.  

 

 

METODOLOGY 
 

To accurately model the long-term global solar radiation in the Mersin 

province, this investigation employed Artificial Neural Networks (ANNs), 

adhering to a meticulously structured methodology that encompassed several 

critical steps. Initially, a comprehensive dataset was compiled, capturing 

various atmospheric parameters relevant to solar radiation patterns. 

Subsequently, the data underwent rigorous preprocessing to ensure its 

integrity and suitability for the ANN framework. Following this, an optimal 

ANN architecture was designed, taking into consideration the intricacies of 

the data and the specific objectives of the study. The training phase involved 

the application of advanced algorithms to refine the model's predictive 

capabilities. Furthermore, validation processes were implemented to assess 

the reliability and accuracy of the ANN outputs against established 

benchmarks. Ultimately, the findings of this research are anticipated to 

contribute significantly to the field of solar energy, offering valuable insights 

for future applications and studies focusing on solar radiation modeling in 

similar climatic regions. 

 

Data Collection and Preprocessing  

The investigation embarked upon a meticulous examination of a 

voluminous dataset accumulated over a decade, encapsulating measurements 

of solar radiation. Within the context of the modeling framework, the pivotal 

input variables were delineated as solar altitude angle, wind speed, and dry-

bulb temperature, with the direct solar radiation value designated as the 

output variable of interest. In the initial phase of data preprocessing, the 

challenge of missing values was adeptly tackled through the application of 

interpolation techniques, thereby bolstering the integrity of the dataset. 

Subsequently, the dataset underwent normalization to align with the 

stringent input prerequisites of the model, a process that not only ensured 

uniformity but also significantly enhanced computational efficacy. The 

insights gleaned from this meticulous approach are anticipated to contribute 

substantially to the ongoing discourse in the field of solar energy modeling. 

Design of the Artificial Neural Network Model  

The artificial neural network (ANN) model was meticulously 

developed employing MATLAB’s Neural Fitting Tool (nfttool), 
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encompassing a tri-layer architecture: an input layer, a solitary hidden layer, 

and an output layer. The hidden layer was meticulously configured with 30 

neurons, a decision made to strike an optimal equilibrium between the 

complexity of the model and computational efficacy. During the training 

phase, the Levenberg-Marquardt backpropagation algorithm was judiciously 

implemented, recognized for its rapid convergence and proficiency in 

managing datasets of moderate scale. Furthermore, this methodological 

choice is anticipated to yield robust predictive capabilities, thereby 

facilitating enhanced understanding of the underlying patterns within the 

data. The outcomes derived from this study are expected to contribute 

significantly to the ongoing discourse in the realm of neural network 

applications. 

As illustrated in Figure 1, a comprehensive schematic diagram 

delineates the intricate integration of input and output variables within the 

architecture of the artificial neural network (ANN), alongside the systematic 

organization of the dataset. This meticulous configuration is paramount, as it 

underpins the precise execution of the learning process, thereby facilitating 

optimal performance and reliability in the ensuing analyses. Such an 

arrangement not only enhances the functional capabilities of the ANN but 

also ensures that the derived outcomes are both valid and replicable, thus 

contributing to the overarching goals of the research endeavor. 

 

 

Figure 1: Definition of Input and Output Data Structure for Artificial Neural 

Network 

In the configuration presented, the input dataset, identified as 𝑥1, is 

meticulously arranged into a matrix comprising 87,672 samples distributed 

across three distinct variables. Correspondingly, the output dataset, 

symbolized as 𝑦1, is constructed as a matrix that likewise contains 87,672 
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samples aligned with a singular variable. This systematic organization 

facilitates the artificial neural network's capacity to adeptly discern and 

encapsulate the intricate interdependencies that exist between the input and 

output variables, thereby enhancing the overall modeling efficacy. 

It is evident from the detailed analysis conducted on the input-output 

datasets that the meticulous structuring significantly enhances the model's 

training efficacy, leading to a notable increase in predictive precision. 

Moreover, this sophisticated modeling architecture facilitates the forecasting 

of long-term global solar radiation, thereby offering a reliable instrument for 

strategic initiatives, including energy resource planning and the optimization 

of renewable energy infrastructures. Furthermore, the implications of such 

advancements are anticipated to resonate throughout various sectors, 

ultimately contributing to a more sustainable energy landscape. The findings 

presented here are poised to serve as a valuable reference for practitioners 

and researchers dedicated to the advancement of renewable energy 

technologies. 

The Artificial Neural Network (ANN) architecture is meticulously 

designed with three integral layers: an input layer, a singular hidden layer, 

and an output layer. The input layer is constituted of three distinct neurons, 

each directly aligned with one of the critical input variables—solar altitude 

angle, wind speed, and dry-bulb temperature. In contrast, the hidden layer is 

endowed with 30 neurons, judiciously arranged to facilitate the acquisition 

of complex, non-linear correlations while adeptly capturing the subtle 

interdependencies that exist between the input and output variables. The 

output layer is comprised of a solitary neuron, which serves to encapsulate 

the predicted value of direct solar radiation. This structured approach is 

anticipated to yield insights into the multifaceted dynamics governing solar 

energy interactions. 

As illustrated in Figure 2, a comprehensive schematic representation 

of the model’s architecture is presented. It is evident that the artificial neural 

network (ANN) model initiates with three input neurons, subsequently 

advancing through a hidden layer comprising 30 neurons, and culminating in 

a solitary neuron within the output layer. The hidden layer functions as the 

computational nucleus, utilizing its 30 neurons to effectively capture 

intricate, non-linear relationships inherent within the dataset. This specific 

arrangement of the hidden layer was meticulously selected to optimize 

training efficiency while concurrently achieving elevated predictive 

accuracy. 

The architectural configuration delineated herein effectively 

harmonizes computational efficiency with the learning aptitude of the model, 

thereby enabling the Artificial Neural Network (ANN) to attain a 

commendable degree of precision in the forecasting of solar radiation. 

Furthermore, the model has been robustly employed in the prediction of 

solar radiation within the Mersin province, underscoring its utility in 
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facilitating energy planning and enhancing the optimization of renewable 

energy systems. In light of the aforementioned, the implications of this work 

are anticipated to furnish invaluable insights for researchers and practitioners 

dedicated to advancing the integration of renewable energy sources. 

 

 
Figure 2: Artificial Neural Network Architecture and Layer Structure 

 

Data Partitioning and Model Training  

In the domain of Artificial Neural Network (ANN) modeling, the 

segmentation of the dataset into training, validation, and testing subsets 

emerges as an indispensable procedure for appraising the model's efficacy 

and ensuring its capacity to generalize effectively. Within the framework of 

this investigation, the dataset, comprising a substantial total of 87,672 

samples, was judiciously randomized into three distinct subsets to facilitate 

the modeling endeavor. The training subset, encompassing 75% of the 

overall data, was engaged to cultivate the ANN model, enabling it to discern 

intricate patterns and interrelationships inherent within the dataset. 

Concurrently, the validation subset, which constituted 15% of the data, was 

employed to vigilantly track the model’s performance throughout the 

training phase, offering vital insights that contributed to the refinement of 

the model and the mitigation of overfitting risks. The final 10% of the data 

was designated to the testing subset, which performed a critical role in the 

independent evaluation of the model's performance in scenarios reflective of 

real-world applications. 
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In examining the methodologies employed in data partitioning, it 

becomes evident that this systematic framework facilitates a thorough 

assessment of the model’s learning, generalization, and predictive 

competencies. Furthermore, this approach serves as a robust basis for precise 

solar radiation forecasting, underscoring the dependability of the artificial 

neural network (ANN) model in real-world scenarios. By emphasizing these 

aspects, the study aims to contribute valuable insights for those engaged in 

the advancement of forecasting techniques. 

As illustrated in the accompanying Figure 3, the comprehensive 

dataset, consisting of 87,672 distinct samples, was meticulously partitioned 

into three specific subsets: a dominant 75% designated for training (65,754 

samples), a critical 15% allocated for validation (13,151 samples), and a 

final 10% reserved for testing (8,767 samples). The training subset served as 

the foundation for the learning trajectory of the Artificial Neural Network 

(ANN) model, focusing on the reduction of prediction errors and the 

meticulous adjustment of model parameters. The validation subset assumed 

a crucial function in evaluating the model's capacity for generalization and in 

mitigating the risks of overfitting throughout the training phase. In parallel, 

the testing subset, intentionally set aside for independent assessment, was 

utilized to gauge the model’s predictive accuracy on data that had not been 

previously encountered. This tripartite division strategy establishes a solid 

framework for enhancing the precision of the ANN model, thereby ensuring 

dependable predictions in the intricate domain of solar radiation forecasting. 
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Figure 3: Percentage Distribution of the Dataset for Training, Validation, and 

Testing 

The meticulous partitioning of the dataset into training, validation, and 

testing subsets exemplifies a refined strategy aimed at optimizing model 

efficacy. The training subset served as the foundational support for the 

learning framework, while the validation subset played a critical role in 

assessing the model’s capacity to generalize across diverse scenarios. 

Conversely, the testing subset was reserved exclusively to appraise the 

model’s predictive performance in conditions that closely mirror real-world 

applications. To ensure a streamlined and precise training process, the 

Levenberg-Marquardt algorithm was employed, revered for its rapid 

convergence and commendable accuracy, making it exceptionally 

appropriate for datasets of moderate dimensionality. Additionally, a robust 

automated termination protocol was integrated, which ceased the training 

when an escalation in validation set error became apparent, thus further 

fortifying the model’s ability to generalize effectively. 

As evidenced by the comprehensive evaluation conducted across the 

three distinct subsets—training, validation, and testing—the performance of 

the ANN model has been scrutinized to ascertain its robustness and 

reliability. Furthermore, Figure 4 presents a visual representation of the 

intricate training process, effectively illustrating the results alongside the 

performance metrics. This depiction underscores the model's remarkable 

proficiency in predicting solar radiation with a level of accuracy that is 

indeed noteworthy. Such findings are anticipated to serve as a valuable 
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resource for researchers delving into advancements in predictive modeling 

within the field. 

 

 
Figure 4: Artificial Neural Network Training Process and Performance Evaluation 

Results 

As evidenced by the detailed statistical analysis conducted, the model 

in question was subjected to a rigorous evaluation process, employing a total 

of 65,754 samples designated for training, alongside 13,151 samples 

allocated for validation, and 8,767 samples reserved for testing purposes. 

The resulting Mean Squared Error (MSE) values were computed as 

9.034×10⁻⁴ for the training dataset, 9.488×10⁻⁴ for the validation dataset, and 

8.434×10⁻⁴ for the testing dataset, reflecting the model's predictive 

performance. Furthermore, the regression coefficient (R) values consistently 

surpassed the threshold of 0.90 across all utilized datasets—training, 

validation, and testing—serving as a testament to the model's remarkable 

accuracy and its robust capacity for generalization across varied data 

conditions. The implications of these findings are anticipated to significantly 

contribute to the ongoing discourse among researchers focused on the 

enhancement of predictive modeling methodologies. 

The findings presented herein elucidate the remarkable efficacy of the 

artificial neural network (ANN) model in discerning and delineating intricate 

patterns and interrelationships embedded within the dataset. In light of this, 

the results serve to confirm the model's dependability and resilience as a 

mechanism for forecasting solar radiation. Its evidenced precision and 
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capacity for generalization position it as a highly promising methodology for 

tangible applications, including energy strategizing and the enhancement of 

renewable energy frameworks. 

 

 

RESULTS and DISCUSSIONS 

 

In examining the extensive outcomes derived from the long-term 

forecasting of global solar radiation utilizing the Artificial Neural Network 

(ANN) model, it becomes evident that a comprehensive analysis is 

warranted. The figures presented herein afford profound insights into the 

model’s performance throughout the critical phases of training, validation, 

and testing, thereby underscoring its adeptness in discerning intricate 

patterns and producing precise predictions. Such visual depictions serve to 

elucidate the robustness and dependability of the ANN model, affirming its 

efficacy in the realm of solar radiation forecasting. This exploration is 

anticipated to be of substantial value to researchers engaged in advancing 

predictive methodologies in solar energy applications. 

  

 
Figure 5: Training, Validation, and Test Performance (Error Analysis) 

As illustrated in Figure 5, the Mean Squared Error (MSE) values 

derived from the diverse phases of training, validation, and testing of the 

Artificial Neural Network (ANN) model reveal a noteworthy trend. It is 

evident that the error rates exhibited a steady decline with each iteration 

throughout the training process, culminating in optimal validation 
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performance by epoch 49. The graphical depiction accentuates a parallel 

progression between validation and test errors in relation to the training 

errors, underscoring the model's robust capacity for generalization. 

Crucially, the consistent absence of any escalation in validation error during 

the course of training serves as a compelling indication that the phenomenon 

of overfitting was adeptly mitigated. 

As evidenced by the comprehensive analysis undertaken, the 

advancements in ANN-based modeling for long-term solar radiation 

forecasting have underscored its superiority relative to conventional 

methodologies. Furthermore, the findings illuminate the remarkable 

efficiency of the Levenberg-Marquardt algorithm, which facilitated swift 

convergence while simultaneously amplifying model precision. This further 

substantiates the ANN’s adeptness at managing intricate predictive 

challenges with an impressive degree of reliability. The implications of these 

results are poised to significantly enrich the discourse surrounding predictive 

modeling in renewable energy applications, offering a valuable resource for 

scholars and practitioners alike. 

These results confirm that the modeling performed with artificial 

neural networks is superior to traditional methods and demonstrate the 

success of the Levenberg-Marquardt algorithm in providing fast 

convergence and accuracy. 

 

 

Figure 6: Error Trends and the Influence of Variables 
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As illustrated in Figure 6 examined, the performance metrics of the 

artificial neural network (ANN) model have been meticulously analyzed, 

with particular emphasis on gradient values, the learning rate (µ), and the 

validation checks conducted throughout the process. The initial graph 

distinctly reveals a significant decrease in gradient values as the iterations 

progress, underscoring the model's adeptness at effectively minimizing 

errors. This persistent reduction emphasizes the model’s proficiency in 

adjusting its parameters with precision, ultimately attaining a state of optimal 

performance. Furthermore, the subsequent visual data corroborate the 

robustness of the learning rate, highlighting its pivotal role in facilitating the 

convergence of the model during the training phase. Such insights are 

anticipated to serve as valuable contributions to the body of knowledge for 

researchers focused on enhancing the efficacy of ANN applications in 

complex data environments. 

The subsequent illustration delineates the error distribution (σ), 

indicative of the model's fidelity to a meticulously structured error 

minimization pathway. Such a deliberate approach mitigated the risks of 

excessive fine-tuning, thereby ensuring consistency during the validation 

period. The unwavering nature of the error distribution further accentuates 

the reliability of the Adam optimization method in harmonizing swift 

convergence with accuracy. 

As illustrated by the comprehensive validation checks conducted, the 

graphical representation substantiates the model's efficacy in addressing 

overfitting throughout the validation phase. The observed low values during 

these validation checks correspond directly with the steady decline in 

gradient, thereby fortifying the model's ability to generalize with notable 

effectiveness. Furthermore, this alignment between validation metrics and 

gradient behavior serves to enhance the confidence in the model's predictive 

performance across diverse datasets. Such findings are anticipated to offer 

valuable insights for practitioners and researchers engaged in modeling 

endeavors, particularly in the realm of ensuring robust and reliable 

outcomes. 

In light of the comprehensive analysis presented, the consistent 

decline in gradient, coupled with the stable learning rate and the negligible 

values observed during validation checks, indicates a proficient execution of 

the error minimization algorithm alongside a seamless learning trajectory. 

Furthermore, these observations substantiate the model's adept adjustment to 

both training and validation datasets, ultimately resulting in a dependable 

and high-performing output for solar radiation forecasting. This meticulous 

approach underscores the significance of optimizing learning mechanisms in 

the pursuit of enhanced predictive accuracy within complex environmental 

systems.  
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Figure 7: "Error Histogram 

 

In examining the graphical representation provided in Figure 7, one 

observes the distribution of errors associated with the model's predictions 

depicted as a histogram. It is evident that a significant proportion of these 

errors congregate in proximity to the zero mark, underscoring the impressive 

predictive accuracy inherent in the ANN model and the presence of minimal 

systematic discrepancies. This pronounced aggregation of errors around the 

zero threshold serves to illustrate the model's adeptness at producing outputs 

that closely align with the corresponding actual values, thereby affirming its 

efficacy in predictive analytics. 

As evidenced by the comprehensive analysis conducted on the 

performance metrics of the model across various datasets, the uniformity 

observed in error distributions among the training, validation, and testing 

phases distinctly underscores the robust generalization capabilities of the 

model. Moreover, the pronounced concentration of errors in proximity to the 

zero mark serves to bolster the assertions regarding the model’s reliability 

and accuracy in predicting solar radiation levels. This consistency is 

anticipated to offer valuable insights to researchers and practitioners engaged 

in the optimization of solar energy forecasting methodologies. 

As can be observed from the analytical assessments conducted, the 

low-error concentration identified within the model presents significant 

implications for practical applications. This underscores not only the 

robustness of the model but also its suitability for pivotal undertakings, 
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including energy planning and the optimization of renewable energy 

systems. Furthermore, these findings substantiate the potential of the ANN 

model in contexts where high accuracy and reliability are of paramount 

importance, thereby highlighting its relevance in advancing the field. 

 

 
Figure 8: Regression Analysis 

 

As illustrated in the comprehensive analysis of the regression findings 

presented in Figure 8, the results obtained from the training, validation, and 

testing datasets of the model reveal a compelling narrative. The coefficients 

of determination (R) were meticulously computed, resulting in values of 

0.90694 for the training dataset, 0.90309 for the validation dataset, and 

0.91118 for the testing dataset. Such persistently elevated R values, all 

exceeding the commendable threshold of 0.90, underscore the model's 

competence in adeptly elucidating the intricate non-linear associations 

between the input variables and the target variable. Additionally, the 

consolidated R value of 0.90683 spanning the entirety of the dataset further 

substantiates the model’s robustness and its predictive prowess, solidifying 

its standing as a reliable tool for analysis. 

The analysis conducted herein elucidates a significant correlation 

existing between the projected and observed values, thereby underscoring 

the model's inherent precision and resilience. Such revelations accentuate the 
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model’s versatility across diverse datasets, rendering it applicable to an array 

of scenarios, particularly in the realm of solar radiation prediction. This 

investigation, which aspires to construct an ANN-based framework for the 

long-term forecasting of global solar radiation specifically within the Mersin 

province, employed an extensive dataset spanning a decade of 

meteorological observations. By integrating key variables such as solar 

altitude angle, wind velocity, and dry-bulb temperature, the model adeptly 

capitalized on the advantageous attributes intrinsic to ANNs, notably their 

capacity for generalization and exceptional accuracy. 

The model architecture, as delineated in the preceding analysis, was 

conceived through the utilization of MATLAB’s Neural Fitting Tool 

(nfttool), subsequently undergoing a meticulous refinement process 

informed by a methodical data partitioning strategy—allocating 75% of the 

dataset for training, 15% for validation, and the remaining 10% for testing 

purposes. A strategic deployment of 30 neurons within the hidden layer, in 

conjunction with the implementation of the Levenberg-Marquardt algorithm, 

facilitated a swift convergence while effectively minimizing errors. The 

empirical findings underscore a commendable performance, highlighted by 

elevated R values across all evaluative phases and notably low Mean 

Squared Error (MSE) metrics, thereby substantiating the model’s adeptness 

in generalizing and yielding dependable predictive outcomes. 

As evidenced by the comprehensive analyses conducted, the 

significance of precise solar radiation forecasting in the realm of renewable 

energy planning and photovoltaic system design cannot be overstated. 

Recent advancements have led to the development of an artificial neural 

network (ANN) model, which, as highlighted in this study, presents a robust 

and remarkably accurate alternative to traditional forecasting methodologies. 

This innovative approach not only underscores the potential for optimizing 

energy production but also illustrates its capacity to significantly improve 

the efficient utilization of renewable energy resources. Furthermore, the 

implications of this model are poised to greatly assist in the successful 

implementation of various energy projects, thereby contributing substantially 

to the advancement of sustainable energy solutions. 
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ABSTRACT 

 

In this study, a hybrid solar-wind energy building design model 

integrated with renewable energy sources was developed for Mersin 

Province, taking into account the local climatic conditions. The project 

incorporates 30 photovoltaic panels and a single wind turbine for energy 

generation. The combined system of solar panels and wind turbines has an 

annual total energy production capacity of approximately 35,000 kWh. The 

system is designed for energy storage and an uninterrupted power supply. 

Mersin's Mediterranean climate, characterized by ample sunshine duration, 

enhances the efficiency of the solar energy system, while the contribution of 

wind turbines was evaluated in coastal areas. Simulation studies were 

conducted using EnergyPlus software, and the performance of the system 

components was analyzed in detail. The simulation results indicate that the 

system reduces carbon emissions by approximately 20 tons annually and has 

a short payback period of 7 years. The study demonstrates that hybrid 

systems are a significant solution in terms of energy efficiency and 

sustainability. The proposed design meets the energy demand while reducing 

dependence on the grid and providing economic savings. This project is an 

example of future hybrid energy buildings and demonstrates the potential for 

more effective use of renewable energy sources in building design. 

 
Keywords – Hybrid Energy System, Renewable Energy, Photovoltaic Panel, Wind 

Turbine, Energy Efficiency. 

 

 

INTRODUCTION 

 

This study introduces a model for a hybrid solar-wind energy building 

designed for Mersin Province, integrating renewable energy sources while 

considering local climatic conditions. This model aims to enhance energy 

efficiency and reduce energy costs. Furthermore, the integration of hybrid 

systems will enable building occupants to benefit maximally from 

sustainable energy. The primary objective of this research is to underscore 

the significance of hybrid energy building design in terms of sustainability, 

energy efficiency, and environmental impact. In this context, the integration 

of innovative technologies in the design processes of hybrid energy 

buildings is intended to reduce energy consumption. In this process, the 

combined use of solar energy systems, wind energy solutions, and energy 

storage systems gains importance. 

The literature on the design and simulation of hybrid energy buildings 

is increasingly growing. In this regard, various methods and techniques are 

being developed to improve energy efficiency. The integration of hybrid 

solar-wind energy systems into building designs has garnered increasing 
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attention in recent years due to the need for sustainable and efficient energy 

solutions. This literature review contributes to the understanding of hybrid 

systems by addressing various studies on their design, simulation, and 

application for buildings and remote areas for energy generation purposes. 

Gadkari (2008) presents a pioneering study on a reconfigurable hybrid 

solar and wind energy system that focuses on the feasibility of infrastructure 

sharing between solar and wind components. The research highlights the 

innovative use of parabolic concentrators for both solar energy collection 

and wind energy conversion, indicating that such hybrid systems could be 

suitable alternatives in regions with low energy demand. 

Abreu et al. (2011) delve deeper into the discussion of hybrid energy 

systems by exploring the benefits of passive systems based on air movement 

in buildings. Their study shows that the integration of wind turbines into 

building designs can enhance indoor comfort while generating electricity. 

The authors advocate for the architectural integration of solar and natural 

airflow systems, which could enhance energy efficiency and economic 

feasibility. 

Bakić et al. (2012) studied photovoltaic/wind systems that include 

hydrogen storage, stating that hybrid systems can significantly improve 

efficiency and reliability compared to standalone systems. Their simulation-

based study reveals that integrating solar thermal and photovoltaic 

components can meet the energy needs of residential buildings and increase 

economic feasibility. 

In the same year, Vukman et al. (2012) reiterated the advantages of 

hybrid power systems, particularly focusing on reducing emissions and 

supporting grid stability. Their work emphasizes the importance of dynamic 

simulations in understanding the performance of hybrid systems and 

provides insights into the operational management of solar PV-wind energy 

systems. 

Schijndel (2016) introduces finite element methods (FEM) for 

building energy simulation, demonstrating the potential for complex 3D 

modeling that includes various factors like ventilation and radiation. This 

approach allows for more detailed assessments of building energy 

performance to optimize the design of hybrid energy systems. 

Nnadi et al. (2017) investigated the application of hybrid solar-wind 

generation systems for electrification in remote areas. The simulation results 

indicate that such systems can effectively improve living standards in areas 

without access to the traditional grid. The study underscores the 

complementary nature of solar and wind resources, suggesting that hybrid 

systems can offer reliable energy solutions for rural populations. 

Assaf (2018) expands on the integration of solar and hydrogen 

systems for heat and power applications. Using TRNSYS software for 

modeling and simulation to understand the energy performance of these 

systems offers a comprehensive approach. The literature review in the study 
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highlights the growing interest in hydrogen systems, presenting them as a 

viable energy solution for residential applications. 

Vadakkepurakkel (2019) focuses on the design of a hybrid power 

generation system that combines solar and wind energy to sustainably meet 

global energy demands. The research highlights the importance of maximum 

power tracking techniques and control strategies to optimize energy 

generation from both sources. 

Nyemba et al. (2019) conducted a parametric study of hybrid power 

generation systems, further enhancing the understanding of hybrid energy 

solutions. Their work emphasizes the importance of spatial assessments and 

feasibility studies in the context of rural electrification, reinforcing the need 

for solutions tailored to different geographical conditions. 

Bhatti et al. (2022) explore machine learning techniques to accelerate 

the discovery of high-performance solar panels, highlighting the potential for 

integrating advanced technologies in renewable energy systems. Their 

systematic review provides insights into the importance of optimizing solar 

panel performance to enhance the efficiency of hybrid systems. 

Hosseini (2023) presents three-level mathematical models to optimize 

energy efficiency, storage performance, and greenhouse gas emissions for 

hybrid renewable energy systems. This model represents a significant 

advance in the strategic planning of hybrid energy systems, aligning with 

sustainability and environmental responsibility goals. 

The synthesis of these contributions aims to provide a comprehensive 

understanding of the design and simulation of hybrid solar-wind energy 

systems. The study highlights the potential applications of these systems in 

building energy solutions and rural electrification initiatives. Solar energy is 

a clean and renewable energy source that is increasingly attracting attention 

from society. The proper utilization of this energy source depends on the 

optimal design of the systems. To design these systems, the amount of solar 

radiation on the earth's surface is the most important parameter, and the 

global model of this radiation can be expressed on an annual, monthly, and 

daily basis. These models can be made using empirical mathematical 

models, artificial neural networks, and relationships with air temperature and 

humidity. However, the results are not very reliable in models developed 

with air temperature and humidity relationships due to the high nonlinearity 

of the data. Meteorological and climatic data are needed to estimate global 

radiation on the Earth's surface. However, in some underdeveloped regions, 

observations at regular time intervals are not possible due to technical 

operations and economic costs. These reasons also limit the number of 

stations in some regions. 

Global radiation models developed using empirical models, artificial 

intelligence approaches, and air temperature and humidity relationships can 

be divided into two main groups: linear and nonlinear. Mathematical models 

forming the first group contain trigonometric and exponential functions and 
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are quite well known. Among all global models, the most well-known one is 

the one presented by Gutzhants. These models are based on the least squares 

approach used during the model development phase. Numerous examples 

developed with this approach have provided frequently used coefficients and 

results. Artificial neural networks, as members of the second group, are 

widely applied in many scientific studies. The most important reason for 

these methods is their nonlinear nature. Ease of use and good prediction 

ability make artificial neural networks one of the most preferred methods 

(Souza, 2020; Al-Ghussain et al., 2020; Mokhtara et al., 2020; Ridha et al., 

2021; Samek et al., 2021). 

Unlike studies on hybrid solar-wind energy systems in the literature, 

this work presents a locally optimized system design by considering the 

climatic and environmental characteristics of a specific region, such as 

Mersin province. Simulations performed using solar panels and a wind 

turbine analyze the system's performance. By adopting a specific approach to 

local energy needs, the study focuses on balancing energy generation and 

consumption.  

 

 

HYBRID ENERGY SYSTEMS 

 

Hybrid energy systems are systems in which different energy sources 

are integrated and utilized. These systems typically combine renewable 

energy sources such as solar, wind, and hydroelectric power with 

conventional energy sources. Hybrid energy systems provide benefits such 

as ensuring energy independence, generating environmentally friendly 

energy, and reducing energy costs. They also create a more resilient energy 

supply system against power outages (Güven & Mete, 2021; Kara et al., 

2022; Işık et al., 2023). 

The design and simulation of hybrid energy buildings offer innovative 

approaches to enhance energy efficiency and create sustainable living 

spaces. This design process is carried out by integrating renewable energy 

sources and using various simulation techniques to reduce energy 

consumption. These simulation techniques are optimized for the effective 

use of solar energy, wind energy, and other renewable resources. 

Furthermore, various software and modeling tools are also employed to 

increase energy efficiency in building design. (Savaş et al., 2022; Yıldız, 

2024). 

The design and simulation of hybrid energy buildings represent an 

innovative approach aimed at creating comfortable living spaces with 

sustainable energy solutions. This approach offers an integrated strategy in 

building design by utilizing innovative engineering solutions and simulation 

techniques to increase energy efficiency and reduce environmental impacts. 
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This strategy focuses not only on the integration of energy systems with 

building design but also on the use of sustainable materials. Hybrid energy 

systems have the potential to optimize energy consumption by incorporating 

renewable energy sources as well as conventional energy sources (Mokhtara 

et al., 2021; Esmaeilishayan et al., 2022).  

 

 

HYBRID SYSTEM DESIGN 
 

The hybrid energy system designed in this study integrates solar and 

wind energy resources to sustainably meet the energy demand of a typical 

residential building in Mersin. The system incorporates photovoltaic (PV) 

panels, a vertical axis wind turbine (VAWT), lithium-ion batteries for energy 

storage, and a microcontroller-based Energy Management System (EMS) 

that intelligently manages energy flow. This integrated approach aims to 

provide a more reliable and stable energy generation by leveraging the 

advantages of both renewable energy sources. The system is designed to be 

grid-connected (on-grid), which means that excess generated energy can be 

fed into the grid, and energy can be drawn from the grid when needed. This 

enhances energy supply security while also contributing to the grid 

infrastructure. The following subsections will examine the system 

components and design details more elaborately. 

 

Components of the Hybrid System  

The foundation of the hybrid energy system is the synergistic 

integration of solar and wind energy. This integration combines the unique 

advantages of both sources, providing a more reliable and continuous energy 

generation (Roy et al., 2022; Hassan et al., 2023). 

The solar energy system converts solar radiation directly into 

electrical energy through Photovoltaic (PV) panels. In this study, 30 PV 

panels, known for their high efficiency and durability, were employed. The 

PV panels utilize polycrystalline silicon technology, with a nominal power 

output of 120 Wp each. They provide effective energy conversion, especially 

in regions with abundant sunshine, such as Mersin. The technical 

specifications of the panels include a cell efficiency of approximately 16%, 

an open-circuit voltage of 17.5 V, and a short-circuit current of 7.0 A. The 

primary reasons for selecting these panels are their high performance, long 

lifespan, and resilience to harsh weather conditions. 

The wind energy system is supported by a vertical axis wind turbine 

capable of generating energy even at low wind speeds. The wind turbine 

used is notable for its compact design, space-saving advantages, and 

aesthetic harmony. Vertical axis turbines are suitable for use on building 

rooftops as they are less sensitive to changes in wind direction. The technical 

specifications of this turbine include a nominal power output of 1 kW, a cut-



35 

 

in wind speed of 3 m/s, and a rated wind speed of 12 m/s. This turbine 

efficiently harnesses the wind potential of Mersin's coastal areas. 

Lithium-ion batteries were used in the energy storage system to ensure 

energy continuity and meet sudden demand fluctuations. Lithium-ion 

batteries were preferred due to their high energy density, long lifespan, and 

fast charge/discharge capabilities. These batteries play a critical role in 

preventing power outages and reducing dependence on the grid by storing 

excess generated energy. The battery capacity used in the system was 

determined based on the building's energy consumption profile and the 

energy production capacity of the hybrid system. 

A microcontroller-based system was implemented as the Energy 

Management System (EMS) to effectively manage the entire system and 

optimize energy use. This system continuously monitors the energy 

produced by both the PV panels and the wind turbine, controls the battery 

state of charge, and optimizes energy flow according to the building's energy 

needs. The EMS also manages the grid connection, allowing excess energy 

to be fed into the grid and energy to be drawn from the grid when needed. 

Advanced control algorithms maximize the system's efficiency and 

reliability.  

 

Site Selection and Architectural Design 

The site selection for the project was determined to ensure maximum 

energy efficiency and to make the best use of Mersin's unique environmental 

conditions. The coastal regions of Mersin offer ideal conditions in terms of 

both solar radiation and wind potential. These regions maximize the 

potential of the hybrid energy system with high annual sunshine duration and 

suitable wind speeds. In the building design, the panels were positioned to 

receive solar radiation at the most optimal angle for efficient operation of the 

solar panels. The panel angles were optimized according to Mersin's latitude 

and seasonal solar movements. Both fixed-position and solar-tracking 

systems were evaluated, and the fixed-position system was preferred due to 

its cost-effectiveness and ease of maintenance. The wind turbine was 

integrated into the building's roof. This design approach not only saved 

space but also allowed the turbine to be elevated above the ground, 

providing access to more stable and stronger wind currents. Integrating the 

turbine with the building's architecture provided advantages in terms of both 

visual coherence and aerodynamic performance. This integrated approach 

combines energy generation and building aesthetics, resulting in an 

innovative and sustainable design. 

The case study building examined in this work is a two-story 

residential structure located in a rural area of Mersin, designed with a unique 

architectural approach. The concept designed in the study stands out with its 

harmony with the environmental context, functional interior arrangements, 

and energy efficiency-focused details. Modeled using SketchUp software, 
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the structure has a rectangular footprint of 12.07 meters in length and 9.75 

meters in width. These dimensions constitute a total base area of 117.68 m². 

The total height of the structure is set at 2.7 meters, a measure chosen 

considering human scale and visual balance. The interior layout of the two-

story building is designed to support family life. The ground floor is 

dedicated to common living areas (living room, kitchen, dining area, etc.), 

while the upper floor contains more private spaces such as bedrooms, 

bathrooms, and a study area. This floor plan aims to balance privacy and 

social interaction. Factors affecting the building's energy performance, such 

as insulation properties, material selection, and window sizes, will be 

discussed in detail in subsequent sections in the context of simulation results. 

Determining the building's energy needs is crucial for sizing the 

hybrid system and evaluating its performance. In this study, the building's 

energy demand was approximately calculated considering the widely used 

TS 825 standard (Thermal Insulation Requirements for Buildings) for 

residential buildings and empirical data from relevant literature (e.g., Perez-

Lombard et al., 2008). The calculations took into account factors such as the 

building's geographical location (Mersin), climate data (temperature, 

humidity, solar radiation), building materials, insulation properties (e.g., 

insulation material and thickness in walls, roof, and floor), window areas 

(window type and U-value), and lighting and appliance usage (average 

electricity consumption). The panels, with a slope of 34.75°, were 

subsequently placed on the model building designed by SketchUp. The 

spacing of the panels for Mersin province was determined based on 

calculations. In the study, the building geometry was generated in the 

SketchUp modeling program. For energy simulation calculations, 

EnergyPlus was chosen due to its widespread availability, easy access to 

educational content, calculation capabilities, and interoperability with 

SketchUp. During the evaluation of the modeled building's energy 

efficiency,  
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Figure 1: Isometric View of the Case Study Building 

 

Figure 1 represents a modern residential building integrated with 

renewable energy systems. The design utilizes solar and wind energy (hybrid 

energy). In the design, a significant portion of the roof is covered with 

photovoltaic (PV) panels. These panels convert solar energy into electrical 

energy, meeting a portion of the building's energy needs. The number and 

arrangement of panels were determined based on the building's energy 

demand and the region's solar potential. The design includes a vertical-axis 

wind turbine on the roof. This turbine contributes to the hybrid system by 

converting wind energy into electrical energy. Vertical axis turbines are 

preferable in residential applications as they are less sensitive to changes in 

wind direction. 

 

Building Energy Performance Assessment and Insulation Optimization 

In the evaluation of building energy performance, software developed 

by İzoder (Heat Insulation Association) following solar modeling is 

frequently preferred today. These types of software, while analyzing the 

energy efficiency of buildings, allow for the calculation of heat losses 

through transmission in building elements. These calculations are performed 

considering the building's insulation properties, the suitability of the 

materials used, their costs, and environmental impacts. Furthermore, it is 
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also important to ensure compliance with technological advancements in the 

industry and future energy efficiency targets. Insulation materials used in 

buildings are evaluated not only for their thermal insulation properties but 

also according to multifaceted criteria such as fire safety, sustainability 

(environmental friendliness, recyclability, etc.), and human health. 

Insulation in buildings is modeled based on the TS 825 standard 

(Thermal Insulation Requirements for Buildings) in Turkey. This standard 

aims to minimize heating and cooling energy consumption by determining 

the levels of thermal insulation and window properties to be applied in 

buildings. TS 825, which first came into force in 2000, took a significant 

step towards increasing energy efficiency in buildings by introducing lower 

limits for energy demand with the update made in 2008 (Turkish Standards 

Institution, 2008). TS 825 enables the calculation of annual heating energy 

demand and the risk of condensation for buildings in four different climate 

zones of Turkey. These calculations are critically important for evaluating 

the energy performance of buildings and verifying compliance with legal 

requirements. 

The specific heat loss calculations and condensation data included in 

the TS 825 standard are used to ensure accuracy and reliability in the 

evaluation of building energy performance. The building components (walls, 

roof, floors, windows, etc.) and the materials used are compared with these 

calculations, and the energy efficiency of the design is reviewed within the 

framework of national legislation and standards. If the performance criteria 

determined as a result of the calculations cannot be met, the type of 

insulation material, thicknesses, layer arrangement, or other design 

parameters (e.g., window sizes, orientation) are rearranged. According to the 

calculation method defined in TS 825, the energy performance of the 

building is evaluated with a holistic approach, taking into account the 

balance between heat losses and internal heat gains (people, lighting, 

appliances) and solar energy gain. Among the main factors affecting 

building energy performance, the physical properties of the structure 

(dimensions, orientation, surface areas), the efficiency of heating and 

cooling systems, regional climate conditions (temperature, humidity, solar 

radiation, wind), and especially the potential of solar energy occupy a large 

place. Accurate and detailed modeling of these factors is critical for 

optimizing the annual heating and cooling energy demand of the building 

and achieving an energy-efficient design. 

In this study, EPS (Extruded Polystyrene) was used as the insulation 

material. Based on the calculations made considering the U-values 

recommended in the TS 825 standard and relevant literature, optimum 

insulation thicknesses were determined by taking into account the thermal 

conductivity coefficients (λ) of the materials used. These calculations aim to 

optimize the energy efficiency of the building by determining the amount of 

heat loss from different building elements (walls, roof, floor). Furthermore, 
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insulation materials and thicknesses were re-evaluated by considering 

environmental factors such as the contact of the building's walls, ceiling, and 

floor areas with the outside air, open spaces, and soil. This evaluation also 

includes the condensation control criteria specified in TS 825. 

In the thermal performance analysis of the example building, the 

layered structure of the building elements and the thermal properties of the 

materials constituting these layers were examined in detail. In this context, 

thermal resistance (R) values were calculated for each layer of the wall, 

ceiling, and floor elements, and the total thermal resistance and thermal 

transmittance (U) coefficients were obtained from these values. 

The exterior wall consists of the following layers from inside to 

outside: internal surface thermal transmittance coefficient, lime mortar, solid 

or vertically perforated bricks conforming to TS EN 771-1 standard, 

extruded polystyrene foam (XPS) insulation material, and plaster mortars 

made of lightweight inorganic aggregates. The thermal resistance of each of 

these layers was calculated by considering their thicknesses and thermal 

conductivity values, and the total wall thermal resistance was found to be 

2.35 m²K/W. The corresponding thermal transmittance coefficient was 

calculated as 0.423 W/m²K. These values indicate the resistance of the wall 

to heat transfer and, consequently, its insulation performance. 

The ceiling element consists of the internal surface thermal 

transmittance coefficient, reinforced concrete, and extruded polystyrene 

foam (XPS) insulation material. The total thermal resistance of the ceiling 

was calculated as 4.24 m²K/W, and the corresponding thermal transmittance 

coefficient is 0.236 W/m²K. The ceiling, which has a higher thermal 

resistance compared to the wall, exhibits better thermal insulation 

performance. This situation is important in terms of reducing heat losses 

through roofs. 

The floor element consists of layers such as the internal surface 

thermal transmittance coefficient, synthetic material coverings (e.g., PVC), 

cement mortar screeds, extruded polystyrene foam (XPS) insulation 

material, another layer of cement mortar screed, and concrete made using 

non-porous aggregates. The total thermal resistance of the floor was 

calculated as 2.32 m²K/W, and the corresponding thermal transmittance 

coefficient was found to be 0.431 W/m²K. Due to the more complex heat 

transfer in soil-contact surfaces and the non-constant soil temperature, a 

factor of 0.5 is generally used in calculating heat losses through the floor. 

This factor approximately represents the effect of the soil-contacting surface 

on heat transfer. 

The thermal resistance and thermal transmittance coefficients obtained 

in this analysis play an important role in evaluating the thermal performance 

of building elements and calculating building energy performance. 

Especially the use of insulation materials (such as XPS) significantly 

increases the thermal resistance of building elements, reducing heat losses. 
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This situation is of great importance in terms of ensuring energy savings and 

thermal comfort in buildings. 

As a result of the calculations made for the walls of the example 

building, the total thermal resistance (R) was found to be 2.35 m²K/W. The 

corresponding thermal transmittance (U) was calculated as 0.423 W/m²K. 

The total wall area of the building exposed to the outside air was measured 

as 318 m². According to these data, the total heat loss through the walls was 

calculated as 134.51 W/K. As a result of the calculations made for the roof 

of the example building, the total thermal resistance (R) was found to be 

4.24 m²K/W. The corresponding thermal transmittance (U) was calculated as 

0.236 W/m²K. The total roof area of the building exposed to the outside air 

was measured as 117 m². According to these data, the total heat loss through 

the roof was calculated as 27.61 W/K. As a result of the calculations made 

for the floor of the example building, the total thermal resistance (R) was 

found to be 2.32 m²K/W. The corresponding thermal transmittance (U) was 

calculated as 0.431 W/m²K. The floor area of the building in contact with the 

soil was measured as 117 m². Heat loss calculations for soil-contact surfaces 

are usually multiplied by a factor of 0.5. Therefore, the total heat loss 

through the floor was calculated as 25.21 W/K. The total heat loss through 

transmission from the different building elements (walls, roof, and floor) of 

the building was calculated as 303.28 W/K, including the heat losses from 

the exterior windows and doors, using the Izoder program and the 

calculations mentioned above. This value is an important parameter in 

evaluating the energy performance of the building. The heat loss from the 

exterior windows was calculated as 104.9 W/K, and from doors it was 

calculated as 11 W/K using the Izoder program. 

The monthly calculation of the annual heating energy demand of the 

examined example building provides important information about the 

thermal performance and energy consumption of the building. In these 

calculations, the balance between the thermal losses and thermal gains of the 

building was examined in detail. 

The basis of the calculations is the specific heat loss of the building 

and the difference between the outdoor and indoor temperatures. Specific 

heat loss refers to the heat loss due to the structural characteristics of the 

building and the temperature difference between the outdoor and indoor 

environments. In this study, the specific heat loss was determined as 532.44 

W/K. When calculating monthly heat losses, average temperature 

differences for each month were taken into account. Due to lower outdoor 

temperatures in the winter months (January, February, November, and 

December), the temperature differences and consequently the heat losses 

were found to be higher. For example, the temperature difference determined 

as 10.6°C in January corresponds to a heat loss of 5,444 W. 

The thermal gains of the building were evaluated in two main 

categories: internal and external sources. Internal heat gains include the heat 
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emitted from the metabolic activities of the occupants, lighting, electrical 

appliances, and other internal sources. In this study, the average monthly 

internal heat gain was assumed to be 1,569 W. The most important 

component of external heat gains is solar energy. Solar energy gain varies 

depending on factors such as the building's location, orientation, facade 

characteristics, and monthly sunshine durations. While solar energy gain 

increases in the summer months, it decreases in the winter months. The sum 

of these two types of gains constitutes the total thermal gain of the building. 

To more accurately reflect the balance between heat losses and gains, 

correction factors such as the gain utilization factor and the gain coefficient 

were also included in the calculations. The gain utilization factor indicates 

how much of the total gain obtained can be effectively used, while the gain 

coefficient determines the efficiency of gain utilization by considering the 

thermal inertia and heat storage capacity of the building. 

Considering these factors and the heat losses and gains mentioned 

above, the net heating energy demand of the building for each month was 

calculated. In the winter months, especially in January and February, the 

heating demand was higher due to high heat losses and low solar energy 

gain. In contrast, the heating demand decreased in the spring and autumn 

months, while there was no heating demand in the summer months (May-

September). The heating energy demand for January was calculated as 

9,238,572 kJ, 8,168,688 kJ for February, 4,904,728 kJ for March, and 

1,109,397 kJ for April. For November, it was found to be 3,884,734 kJ, and 

for December, it was 8,262,695 kJ. The annual total heating energy demand 

of the building can be determined by summing these monthly values. 

These calculations provide an important basis for determining the 

measures to be taken to improve the energy performance of the building. 

Strategies such as improving insulation, making greater use of solar energy, 

and increasing the efficiency of heating systems can be developed, especially 

to reduce the high heating demand in the winter months. 

 

 

 

RESULTS and CONCLUSIONS 

 

The monthly energy performance of the building examined within the 

scope of this study provides significant insights into energy efficiency and 

the utilization of renewable energy sources. The monthly energy 

performance of the example building was analyzed in detail, considering 

heating, cooling, photovoltaic (PV) system generation, wind turbine 

generation, and the amount of electricity drawn from/sold to the grid. The 

data presented in Table 1 illustrates the building's energy consumption 

profile, renewable energy generation, and grid interaction in detail.  
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Table 1: Aylık Enerji Dengesi Tablosu 

 

When Table 1 is evaluated, it shows the building's energy 

consumption and production in detail throughout the year. The high heating 

demand, which becomes evident in the winter months (January, February, 

November, December), indicates that the building's energy consumption 

increases during these periods, while the cooling demand, which peaks in the 

summer months (July, August), points to the intensive use of cooling 

systems during these months. Renewable energy sources, namely the 

photovoltaic system and the wind turbine, make significant contributions, 

especially in the spring and summer months, reducing the amount of 

electricity the building draws from the grid and even allowing electricity 

sales to the grid in some months. The "Electricity Net" data in the table 

clearly show the building's net energy consumption and the impact of 

renewable energy sources on the energy balance. These data provide an 

important basis for determining the measures to be taken to increase the 

building's energy efficiency and optimize the use of renewable energy. The 

analyses performed comprehensively reveal the contribution of the hybrid 

energy system under current conditions and the steps that should be taken to 

increase its efficiency. Figure 2 presents the results obtained regarding the 

heating and cooling loads of the examined hybrid energy building. 
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Figure 2: Heating and Cooling Loads 

 

When the heating and cooling loads of the building are examined, the 

high heating demand in January and February is noteworthy. This situation 

indicates that the building's energy needs during the winter months are 

largely due to heating systems. On the other hand, starting from March, the 

heating load begins to decrease and drops to zero in April. This process 

reveals that the need for heating disappears in the spring and summer months 

due to the influence of the Mediterranean climate. Starting from May, 

cooling loads increase rapidly and peak in July and August (at levels of 7500 

kWh). This indicates that a large amount of energy is consumed to maintain 

comfort inside the building during the summer months due to hot weather 

conditions. From September onwards, cooling loads begin to decline, and a 

balance is achieved towards the end of the year as the energy demand 

decreases again. Figure 3 presents the results obtained regarding renewable 

energy generation for the examined hybrid energy building. 
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Figure 3: Renewable Energy Generation 

 

Figure 3 illustrates the generation performance of the renewable 

energy sources used in the system. The solar panels (PV) generate 

significantly more energy throughout the year compared to the wind turbine. 

This is due to Mersin being a region with high solar radiation potential. 

During the summer months, solar panels reach their maximum generation 

levels, peaking at 183 kWh in September. This indicates that PV panels are 

more effective in energy generation during the warmer months. The wind 

turbine, on the other hand, has a lower generation capacity throughout the 

year. The average monthly energy generation varies between 3-12 kWh, a 

contribution that is quite limited compared to solar panels. This situation 

highlights the importance of using the wind turbine as a supplementary 

energy source. Figure 4 presents the results obtained regarding the facility's 

consumption and the electricity drawn from the grid for the examined hybrid 

energy building. 
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Figure 4: Facility Consumption and Electricity Drawn from the Grid 

 

When Figure 4 is examined, it compares the facility's net energy 

consumption and the amount of electricity drawn from the grid, revealing 

that energy generation is insufficient to meet consumption. Particularly 

during the summer months, due to the increased cooling demand, a 

significant increase in the amount of electricity drawn from the grid is 

observed. This situation demonstrates that the renewable energy system 

alone cannot meet the entire energy demand and that grid support is still a 

significant necessity. Throughout the year, the amount of electricity drawn 

from the grid follows a parallel trend with the facility's energy consumption. 

This indicates an existing imbalance between energy generation and 

consumption and suggests that the hybrid system needs to be made more 

efficient. Figure 5 presents the results obtained regarding the comparison of 

renewable generation and consumption for the examined hybrid energy 

building. 
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Figure 5: Comparison of Renewable Generation and Consumption 

 

Figure 5, which compares renewable energy generation with the 

facility's total energy consumption, reveals that the system's current 

generation capacity is far from meeting the consumption. The combined 

generation of PV panels and the wind turbine falls significantly short of 

meeting the increased cooling load, especially during the summer months. 

This situation highlights the necessity of incorporating additional energy 

generation sources into the system. To enhance the performance of the 

hybrid system, particularly during periods of peak energy demand in the 

summer months, increasing the number of PV panels and integrating a more 

efficient wind turbine can be considered. Additionally, increasing the 

capacity of energy storage systems is important for utilizing the generated 

energy more efficiently. 

These results indicate that the energy generation capacity of the hybrid 

system should be increased and that the balance between consumption and 

generation should be optimized. The following suggestions stand out: 

Solar energy generation can be increased by using more PV panels. 

The use of more efficient or a greater number of wind turbines can 

increase energy generation. 

Increasing battery capacity will help balance fluctuations between 

energy generation and consumption. 

Smart energy management systems and energy-saving measures can 

contribute to optimizing energy demand. 
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These analyses demonstrate that hybrid energy systems offer a 

significant solution for energy efficiency and sustainability in regions with 

high renewable energy potential, such as Mersin. 
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ABSTRACT 

 

Internal combustion fossil fuel passenger vehicles are scrapped after their 

engine failures cannot be fixed or after their economic life. If some of these 

vehicles only have engine hardware failures and their running hardware is 

functional, there is an economic loss. It is possible to convert such vehicles 

into electric vehicles by installing appropriate electrical equipment. Thus, 

vehicles with such problems can be brought back to the economy by 

converting only the internal combustion engine to an electric motor (ICE) 

under suitable conditions. In this study, it was investigated whether it is 

economical to convert internal combustion fossil fuel vehicles (ICE) to 

electric vehicles (EV) and how long it will take to cover the investment cost 

if the conversion is made. The scope of the study was narrowed down by 

considering passenger type internal combustion mid-range vehicles. The 

proposed calculation method is aimed to help in the conversion of internal 

combustion engines to electric vehicles. It is expected that the data obtained 

as a result of the study will be used in conversion calculations and will open 

wide research area for new studies. 

 
Keywords – Internal Combustion Engine, Electric Vehicle Conversion, Cost 

Analysis, Berak-point Analysis, Breakeven Analysis. 

 

 

INTRODUCTION 

 

In recent years, the automotive industry's focus has significantly shifted 

towards the rapid increase in the production of electric vehicle (EV) models. 

Historical records suggest that the invention of electric vehicles dates back to 

nearly two centuries ago, initiated by Faraday’s theory of electromagnetism. 

While it is believed that the first electric vehicles were invented in the early 

1830s, there is no definitive consensus on the inventor, and some sources 

present conflicting information. 

The negative impact of internal combustion engines (ICEs) on the 

environment and human health due to particle and gas emissions is well-

documented (Zainuri et al., 2024). Converting conventional vehicles to 

electric ones involves replacing the internal combustion engine with an 

electric motor and components powered by electrical energy. 

Today, electric vehicle conversions are predominantly observed in passenger 

cars, light commercial vehicles, and heavy-duty vehicles. As of 2023, the 

estimated number of road vehicles globally is approximately 2.24 billion, in 

addition to marine and air vehicles used for various purposes. In Turkey, 

according to the Turkish Statistical Institute (TÜİK), the number of 
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registered vehicles reached an all-time high of 28,740,492 in 2023, with a 

distribution as detailed in Table 1. 

Table 1. Proportional Distribution of Land Vehicles in Turkey in 2023 

Vehicle Type Proportion  (%) 

Passenger Car 53.0 

Motorcycle 17.7 

Light Commercial 15.6 

Tractor 7.6 

Truck 3.3 

Minibus 1.8 

Bus 0.7 

 

As shown in Table 1, passenger cars make up the majority of these vehicles. 

With the increase in the number of vehicles, the demand for fuels used in 

their systems also rises. Fossil fuels such as gasoline, diesel, liquefied 

natural gas (LNG), and compressed natural gas (CNG) are commonly used 

in ICE-powered vehicles, while experimental hydrogen fuel cell ICEs are 

excluded from this study. 

Numerous studies in the literature highlight the environmental consequences 

of greenhouse gases emitted by fossil fuels, which contribute to climate 

change. With countries promoting cleaner energy sources, electricity, which 

is less polluting than fossil fuels, has started to be used in vehicles. Over the 

past two decades, the use of electricity in land, air, and marine transportation 

has gained significant traction. For road vehicles, in particular, electric 

energy usage aligns better with market expectations in terms of efficiency. 

The propulsion system in electric vehicles relies on an electric motor 

powered by a battery installed in the vehicle. However, battery capacity 

remains a constraint for EVs. As advancements in battery technology 

continue, this limitation is expected to diminish. 

Converting ICE-powered vehicles to electric involves complying with 

technical requirements and legal regulations, such as obtaining type approval 

documents for vehicle registration. When performed in adherence to these 

rules, the conversion process can significantly benefit the economy. 

Moreover, as fossil fuel resources dwindle, vehicles that rely on these fuels 

may lose value and become obsolete. By replacing the propulsion 

mechanisms of fossil-fuel vehicles with electric motors, their economic life 

can be extended. In the future, new regulations might even make such 

conversions mandatory. 

This study examines the economic analysis of converting fossil fuel-powered 

vehicles to electric by replacing ICE mechanisms with electric motors to 
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extend their economic life. The analysis is conducted using engineering 

economics techniques. 

Electric Vehicle in Literature Short Review 

The invention of the first electric vehicles involved battery replacement 

when the energy was depleted, as there was no charging system to recharge 

the batteries while in use. This limitation persisted until 1859, when 

physicist Gaston Plante invented rechargeable batteries. Later, in 1881, 

French chemical engineer Camille Alphonse Faure developed a method for 

mass-producing lead-acid batteries, giving electric vehicles a new 

dimension. However, battery capacity has continued to limit the performance 

of electric propulsion systems to this day. Hybrid propulsion systems that 

partially utilize both fossil fuels and electricity were developed to address 

these constraints. 

Hybrid Electric Vehicles 

Hybrid vehicles are equipped with both electric motors and internal 

combustion engines as propulsion systems. At lower speeds and torque 

demands, the vehicle uses electric energy, while higher speeds and loads 

activate the ICE. The battery system in hybrid vehicles is charged either 

through the ICE's motion or internal mechanisms. 

 
Figure 1: Hybrid Electric Vehicle, (Mi & Masrur, 2017) 

 

 

Fully Electric Vehicles 

Fully electric vehicles (EVs) are land vehicles in which the propulsion 

energy is entirely provided by an onboard battery. The required energy is 

supplied by an electrical battery cell and a power management unit. Battery 

charging is generally performed using devices connected to the electrical 

grid, though solar-powered charging stations are also available in some 

cases. 
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Figure 2: Fully Electric Vehicle Architecture, (Ehsani et al., 2021) 

 

Electric Vehicle Conversions 

Countries are introducing environmentally conscious legal frameworks to 

make land vehicles more eco-friendly in the future. Reducing carbon 

emissions in transportation aligns with these sustainability goals. 

Additionally, the depletion of fossil fuel resources is gradually necessitating 

a reduction in ICE usage. Abruptly decommissioning a large number of ICE 

vehicles would negatively impact national economies and consumer budgets. 

Vehicles rendered obsolete might lead to economic losses and social 

challenges. To address these issues, converting ICE vehicles to electric ones 

ensures their continued economic value. 

Electric vehicle conversions are conducted using standardized conversion 

kits developed by various manufacturers. These kits are tailored to vehicle 

weight, range, comfort, technology, and technical constraints. Conversion 

designs must also consider battery charging methods and types, as some 

batteries require alternating current (AC) while others use direct current 

(DC). Home-based charging typically takes 8–12 hours for a full charge, 

while high-capacity fast chargers at stations can charge up to 80% in 20–45 

minutes, depending on the system. 

Every conversion project requires a detailed calculation of investment and 

maintenance costs. For example, replacing an ICE with an electric motor 

varies in cost depending on whether the motor is connected to the existing 

transmission or directly to the wheel axles. Additional considerations include 

chassis design, front/rear-wheel drive configuration, and required 

customization. 
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METHODOLOGY 

Electric vehicle (EV) conversions are conducted using standardized units 

known as electric vehicle conversion kits. Manufacturers prepare these kits 

based on the specific weight, range, comfort, technological, and technical 

constraints of the vehicle. Additionally, manufacturers can offer customized 

kits tailored to consumer preferences. The design of vehicle battery systems 

is also a crucial aspect of the conversion process, as some battery systems 

are compatible with alternating current (AC) charging, while others require 

direct current (DC). 

The time required for a complete conversion depends on the vehicle’s 

specifications. Each component being replaced or removed, such as the 

internal combustion engine (ICE), gearbox, axles, braking systems, and fuel 

systems, demands specific labour hours, as shown in Table 2. 

Table 2. Labor Time for Removing Vehicle Components During EV Conversion 

Internal Combustion Engine 120 

Transmission 40 

Front Axles 30 

Rear Axles 40 

Brake System 80 

Air Conditioning System 30 

Fuel Tank and System 60 

Low-Voltage Wiring 100 

Internal Combustion Engine 120 

 

Since the processes involved in the removal of internal combustion engines 

are generally similar, the unit costs tend to be close to each other. These 

processes only involve disassembly, and no modifications are made to the 

components of the internal combustion engine that will be reinstalled. The 

disassembly of internal combustion engines relies more on experience than 

on advanced technical knowledge and skills. Moreover, even though the 

dismantled internal combustion engines may be scrapped, they still hold 

economic value, which falls outside the scope of this study. To ensure the 

continued economic lifespan of the internal combustion engines being 

removed, the disassembly must be performed by a specialist. 
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Table 3. Labor Time for Installing Components in EV Conversions 

Component 
Time Required 

(Person-Minutes) 

Electric Motor 120 

Electric Inverter 60 

Motor and High-Voltage Wiring 120 

Battery System 120 

Battery Modules 200 

New Brake System 180 

Low-Voltage Wiring Revisions 150 

Air Conditioning and Climate 

Control 

120 

Vehicle Control Unit Modifications 180 

Electric Motor 180 

Electric Inverter 150 

Motor and High-Voltage Wiring 240 

 

The removal of internal combustion engines from vehicles and the 

installation of electric motors for electric vehicle conversions may not be 

completed solely through assembly. Some electric motors require 

modifications to fit the vehicle's axles. In these cases, electric vehicle motor 

manufacturers typically provide standard revision parts and conversion kits 

along with the electric motors. However, these parts often do not fully match 

the vehicles, requiring additional revisions. 

Each revision results in extra labour and manufacturing costs, in addition to 

the standard unit times listed in Table 3. 

Vehicle engine replacement labour costs can be divided into fixed and 

variable costs. Fixed part replacement costs refer to the preparation costs for 

adapting the vehicle, which remain constant for every vehicle. Examples of 

these include preparing the vehicle for conversion, such as removing the 

engine hood, seats, and doors. These labour costs are considered fixed for all 

parts replaced and are added as part of the vehicle's fixed costs. 
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Table 4. Labour Time for Installing Components in EV Conversions 

  Unit Conversion Probality  

Components Worst Case Best Case 

Electric Motor 0.65 0.10 

Electric Inverter 0.65 0.05 

Electric Motor Revise Labour 0.70 0.05 

Electric Motor High Power Cable 

Setup 

0.70 0.05 

Battery Setup 0.80 0.10 

Battery Unit / Modul 0.70 0.10 

Brake System (New Setup) 0.80 0.05 

Brake System Revise (old System)  0.70 0.05 

Air Condition System Setup 0.70 0.05 

Car Control System Unit (ECU) 

Setup & Revise 

0.40 0.01 

Steering Revise 0.50 0.05 

Low Power System Setup & Revise 0.80 0.10 

 

Table 5 presents the annual failure rates of components for an electric 

vehicle. These rates provide an approximate indication of how likely various 

components are to fail during the vehicle's lifespan. However, these rates can 

vary based on factors such as the vehicle's usage patterns, duration of use, 

personal preferences, operating climate, and intended purpose. 
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Table 5. Probability of Electric Vehicle Component Failure 

Components Expected 

Prob. Of 

Faulty 

(Years) 

Exlanation of Faulty 

Battery  %1-3 Electric vehicle batteries usually lose 

capacity rather than fail. Passenger cars 

have longer warranty periods. 

Elektric Motor %0.5-2 The engines of electric vehicles are more 

durable than other electric motors and 

generally have a low failure rate. 

Charge System %2-5 The possibility of an electric vehicle home 

charger malfunctioning is common due to 

the frequency change in the mains voltage. 

Since general charging units are more 

tightly controlled, these types of chargers 

and their ports are less likely to 

malfunction. However, it may also vary 

depending on the charging habits of the 

user. 

Power Elecreonics %1-4 Electric vehicle DC/DC converters and 

inverters may also experience failures 

caused by grid voltage frequency 

fluctuations and sudden and high voltage 

instability. 

Heat pump %2-6 Control system, circuit failure, and sensor 

error encountered in the thermal 

management system of the battery of 

electric vehicles may cause problems in 

battery usage. 

Sensors & Suspension %3-7 Geographical and harsh road conditions 

and climate-related environmental effects 

may affect the proper use of the vehicle's 

sensor and suspension systems. 

Break System %1-3 By using the electro-mechanical and 

regenerative braking system found in 

electric vehicles, brake pad and disc wear is 

relatively less than in the conventional 

braking system. 

Software and 

Eelctronics 

%5-10 The most common problems encountered 

in electric vehicles are software and update 

errors, software hardware incompatibilities, 

and battery management system software 

being incompatible with usage. These 

faults are seen in almost all electric 

vehicles. 
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The change possibilities of faults that may occur in an electric vehicle, as 

well as their frequency, can be explained as seen in Table 6 below. 

According to this table, in addition to the occurrence of a fault during the 

operation of an electric vehicle component, another issue that should be 

considered is how frequently these faults will occur. Accordingly, the 

frequency of faults generally varies depending on the use, as seen in the 

description of the component. 
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Table 6. Frequency of Failures in Electric Vehicles 
Components Freq. of 

Faulty 

Cause of Failures Explanation 

Battery Low-Mid   Cell failure, cooling 

related problems, 

thermal runaway 

and leakage 

The battery warranty 

period is generally 8-10 

years. In most cases, 

capacity loss is more 

common than failure. 

Elektric Motor Very Low Motor bearing wear, 

insulation leakage 

and deterioration 

DC/AC Electric motors 

are much less complex 

and durable than internal 

combustion engines. 

Charge 

System 

Mid Charging port 

deformation issues, 

updated software 

required 

Malfunctions in home or 

fast chargers may depend 

on usage habits. 

Power 

Electronics 

Low-Mid Unbalanced voltage 

stress due to 

frequency change, 

heat pump and 

cooling problems 

Although DC Inverters 

and converters (DC-DC) 

are generally reliable, 

overloads can create high 

risks. 

Heat Pump Mid Measurement error 

or fan failure due to 

pump, signal control 

system problems 

The thermal management 

hardware and software of 

the battery on the vehicle 

is a critical component, 

any failure may affect the 

life of the battery 

operating in the system. 

Suspension & 

Sensors 

Mid-High Deformations, 

factors related to the 

environment used, 

incorrect 

measurements of 

sensors 

Sensor errors are 

frequently encountered in 

autonomous driving or 

advanced driver 

assistance systems of 

vehicles. 

Break System Low-Mid Problems with 

regenerative braking 

systems for electric 

motors 

Compared to 

conventional brakes, the 

pads wear less, but 

electro-mechanical 

failures may occur in the 

regenerative system. 
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Software And 

Electronics 

Mid Software update 

errors, version 

incompatibilities, 

socket connection 

problems 

As the complexity of 

vehicle software 

increases, the number of 

errors that may occur may 

increase, and 

incompatibilities may 

occur due to changes in 

communication protocols. 

 

In electric vehicles, the power required for the motors to move is provided 

by the vehicle's battery. In calculating the battery life, the usage conditions, 

charging-circulation habits, charge retention rate (SoC), climate conditions 

and battery chemical properties can be considered as critical factors. Some 

formulas are used to calculate the useful life of an electric vehicle battery. 

The most commonly used model is the calculation method where the battery 

charge cycle is taken as a reference (Yoshio et al., 2009). 

 
In this total charge cycle Tc calculation method, Bcap is the battery capacity in 

kWh, Ucap is the amount of capacity used in each charge cycle in kWh/cycle. 

In general, when the number of cycles Tc is completed, the battery capacity 

is expected to drop to 80%. One of the basic methods that calculates the 

capacity loss in batteries is the Peukert method. According to this method, 

Equation (2) is the model that explains the capacity loss depending on the 

discharge rate of the battery (Hausmann & Depcik, 2013). 

 
According to Equation (2), where Q is the usable capacity of the battery, C is 

the nominal capacity of the battery, I is the drawn charge current and Inom is 

the nominal capacity. Another factor affecting the amount of battery loss is 

high temperature, which causes permanent loss of charge capacity of the 

batteries. Such battery capacity losses are called thermal losses or thermal 

degradation. The Arrhenius model is used as the most well-known 

calculation method in calculating the degradation capacity losses of batteries 

(Liu et al., 2010). 

 
In the battery degradation model, equation (3) is calculated using k as the 

reaction rate constant, E∝ as the activation energy constant, R as the gas 

constant and T as the temperature in kelvin (K). When all these calculation 

methods are considered, it is seen that the service life of electric vehicle 
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batteries does not depend on a single factor, but their capacities also vary. If 

we assume that the daily capacity of a Li-ion battery with a nominal capacity 

of 120 kWh is 100 kWh, the economic service life can be calculated as an 

average of 3000 cycles as follows. 

 
 

 
Figure 3. Electric Vehicle Battery Capacity Based Usage Graph 

 

The battery capacity loss in the Peukert calculation of an electric vehicle that 

operates with a 2% loss each year will be as in Figure 3. 

For the economic analysis comparison of the conversion of electric vehicles, 

the probabilities of failures that may occur in internal combustion engine 

vehicles and their frequencies should also be taken into account. Internal 

combustion engine vehicles are more likely to fail than electric vehicles due 

to their complex engine and drive systems. In general, the annual failure 

probabilities of a passenger type internal combustion vehicle are at different 

rates as seen in Table 7. 
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Table 7. Probality of Failure in Internal Combustion Vehicles 
Components Probality of 

Failure 

(Years) 

Explanation of Faillures 

Motor (ICE) %5-10 It varies depending on factors such as lack 

of engine lubrication, engine block thermal 

stress, and mechanical wear. 

Gearbox/Transmission %3-5 The probability of failure may be higher in 

electro-mechanical and automatic 

transmissions due to oil and sensor-related 

failures, and lower in manual transmissions. 

Fuel System %5-8 This rate may be caused by the low quality 

fuel used by the engine, and may increase 

further if the fuel filter is not replaced and 

maintained properly. 

Exhaust %3-6 Problems occur more frequently in the 

catalytic converter system, which filters bad 

gases while the exhaust gases of the vehicle 

engine are being thrown out, and in the 

oxygen sensors connected to it, and in leaks 

due to rust and corrosion in the exhaust 

system. 

Motor Fluid System %8-12 Lack of liquid coolant, radiator deformation, 

coolant pump failures are generally 

common. Coolant should be changed 

regularly. 

Electric System %10-15 Frequent battery use due to systems such as 

start-stop in passenger vehicles, selection of 

an inappropriate battery capacity, and the 

service life of the alternator and starter 

motor components depend on it. 

Suspension & Sensors %5-10 Sensors are affected by environmental 

factors such as climate and geographical 

conditions, and excessive loads and 

improper use of the vehicle reduce the life 

of the suspension system. 

Break System %5-8 It occurs due to traditional brake disc and 

pad wear, regular change of brake system 

fluid and maintenance of brake system 

channels are required. 

TurboCharge %5-10 It is necessary to regularly maintain the 

turbocharger lubrication system and clean 

the dirt in the turbo vane system, otherwise 

the probability of failure increases. 

Clutch (If Manual 

Systems in) 

%10-15 If a vehicle has a manual transmission, the 

risk of mechanical fasteners malfunctioning 

increases due to frequent and heavy traffic 

use. 

 

The engine structure in internal combustion engine vehicles consists of more 

parts compared to electric vehicles. This complexity increases even more 



64 

 

when the different combustion patterns of fuels in their own combustion 

chambers are taken into account, especially because the engine fuel system 

is diesel, gasoline or LPG. However, as can be seen from Table 8, the fact 

that the engine fuel intake systems in internal combustion engine vehicles 

are atmospheric or turbocharged (high intake air pressure systems such as 

superchargers etc.) increases this complexity and the probability and 

frequency of failure. 
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Table 8. Failure Frequencies of Internal Combustion Engine Vehicles 
Components Freq. of 

Faillure  

Cause of 

Faillures 

Explanation 

Motor (ICE) Mid-High Overheating, 

lack of 

lubrication, 

piston or 

cylinder 

damage 

It is generally caused by not 

changing the engine's regular 

oil maintenance, filter, or not 

preventing oil leaks, which is 

critical for the engine. 

Gearbox/Transmission Mid Gear wear, 

lack of oil and 

hydraulic 

fluid, 

electronic 

control card 

failures 

It is caused by sensor and 

electronic card failures of 

automatic and 

electromechanical 

transmissions, unsuitable oil 

and hydraulic fluid damages 

the cards and sensors, so the 

failure rates are higher than 

manual transmissions. 

Fuel System Mid Fuel pump 

failure, 

injector 

blockage 

Inadequate fuel quality or 

failure to change the fuel 

filter during maintenance 

may cause this. Especially 

low quality fuel damages the 

injectors. 

Exhaust System Mid Catalytic 

converter 

blockage, 

sensor 

failures 

In diesel-fueled vehicles, 

failure to clean the DPF in 

particular causes frequent 

failure of the exhaust gas 

recirculation (EGR) valve 

and oxygen sensor. At the 

same time, pollutants 

released from low-quality 

fuel also cause additional 

failures. 

Motor Fluid System High Radiator 

leaks, water 

pump failure 

Engine overheating is caused 

by inadequate coolant, 

replacing it with mains water, 

or leaks in the liquid hose. 

This is the most important 

issue to be considered during 

maintenance, especially when 

climate conditions change. 

Electric System Mid Battery 

problems, 

alternator 

failure, 

ignition 

system 

problems 

Battery life may vary 

depending on climate 

conditions. This is due to the 

lack of necessary tests during 

maintenance. 

Suspension & Sensors Mid-High Wear and 

tear, 

environmental 

effects 

It is one of the types of 

failures caused by 

geographical region and 

driving habits. It often occurs 
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in rough and careless use. 

Break System Mid Disc and pad 

wear, 

hydraulic 

fluid leaks 

Since there is no regenerative 

braking system in internal 

combustion engine vehicles, 

brake discs and pads wear out 

faster. This is caused by 

improper and untimely 

replacement of brake hoses 

and brake fluid during 

maintenance. 

Turbocharge (in 

System) 

Low-Mid Overload, 

lack of 

lubrication 

The turbocharger lubrication 

system is more common in 

some engines due to the 

negativities caused by oil 

maintenance. It can also be 

caused by not performing 

EGR maintenance on time in 

diesel vehicles. 

Clutch (If in Manuel 

System) 

Mid-High Disc wear, 

hydraulic 

failures 

It is a very common 

malfunction in vehicles used 

in heavy traffic conditions. 

 

In general, the complex structure of internal combustion engines is another 

important factor that increases maintenance costs. The presence of many 

parts in these types of engines, mechanisms such as different types of fuel 

systems, also causes maintenance costs to increase rapidly. In order to 

reduce maintenance costs, it is necessary to keep these systems under 

constant control. Since mechanical moving engine parts or electro-

mechanical parts face high wear and tear as a result of their continuous 

operation, they also create maintenance cost risks. In addition, malfunctions 

of electronic systems, control circuit cards and sensors or failure to work as a 

result of electrical fluctuations increase the risk of malfunctions and damage. 

 

Other economic analysis parameters in the conversion of internal 

combustion vehicles to electric vehicles are the periodic maintenance costs 

that occur during the use of the vehicles. These costs occur according to 

certain probabilities as in Table 6, and in some cases, they can be at a certain 

time frequency, usually annual. These costs are the maintenance costs 

encountered during the economic life of the vehicles and are carried out to 

protect the economic values of the vehicles. Periodic maintenance and 

operating costs prevent the economic value of vehicles from decreasing, and 

also ensure that vehicles can be driven safely without losing their economic 

value. The approximate calculation of maintenance costs consists of the 

average unit costs shown in Table 9. 
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Table 9. Vehicle Periodic Maintenance Costs Sample Comparison Table 

Service Types 

1400cc ICE 

 

Unit average labour times (km)/year 

0-10.000 

1 year 

10.001-

100.000  

2 years 

100.001-

200.000 

2-5 years 

200.001> 

5 -10 years 

ICE (fuel) 1000 

USD 

4000US

D 

3000USD 6000USD 

ICE (diesel) 2000USD 8000US

D 

10000US

D 

15000USD 

EV Hybrid 2000USD 2000US

D 

6000USD 10000USD 

EV 2500USD 3000US

D 

8000USD 10000USD 

 

There are various methods for calculating power in internal combustion 

fossil fuel vehicles. These methods are calculated differently depending on 

the type of vehicle, production purpose and usage purpose. Similarly, there 

are various methods for calculating power in electric vehicles. Power 

calculations in internal combustion fossil fuel vehicles and electric vehicles 

can be made in common units, kW and horsepower. Since these technical 

calculations are outside the scope of the study, it is necessary to briefly 

mention that the torque power of the electric motor is multiplied by the 

speed of the electric motor and the result is divided by 5252 to obtain the 

horsepower of the engine. 

 

Direct motor driven systems 

In direct motor-wheel drive systems, the converted motor of the vehicle is 

directly connected to the vehicle's axles. The electric motor rotor transmits 

power directly to the vehicle wheels with the help of two different types of 

connection elements, with or without a reduction gear. Despite the cost 

advantage and ease of application, it is not preferred due to the overloading 

of electric motor control systems. 

 

 
Figure 3. Direct Drive Front Wheel Drive Electric Vehicle Model 

 

In the direct front-wheel drive electric vehicle model, the electric motor is 

designed as in Figure 3 and the electric motors are connected to the front 
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wheels of the vehicle via axles. This design is the most preferred design 

model in terms of ease of application and cost. 

 

 
Figure 4. Direct Drive Rear Wheel Drive Electric Vehicle Model 

 

In the direct rear-wheel drive electric vehicle model, the electric motor is 

designed as in Figure 4 and the electric motors are transferred to the rear 

wheels of the vehicle via a differential transmission system. Unlike this 

design, there are shaft and differential drive systems in the vehicle's 

transmission system. In some vehicle applications, this design may have to 

be applied due to various reasons such as the battery pack or the vehicle's 

center of gravity being off-center. 

 

Available transmission drive systems 

The engine power transmission mechanisms of the vehicle to be converted to 

electric may have to be made on the internal combustion engine transmission 

in some vehicles due to technical restrictions or design reasons, directly from 

the electric motor to the vehicle's axles. In this case, the vehicle's existing 

transmission system is used to transfer the electric motor's power movement 

to the wheels. In cases where the electric motor does not fit the existing 

transmission system, installation is provided with interconnect elements. 

This connection element can be specially prepared depending on the vehicle 

type, transmission type and electric motor type, or it is also available as a 

universal converter in ready-made conversion kits. When it is not available 

in conversion kits, it is added as an additional investment cost. 

 

 

 
Figure 5. Current Transmission Driven Front Wheel Drive Electric Vehicle Model 

 

The conversion is completed by connecting electric motors to the existing 

drive system of some vehicles. In such designs, electric motors are 

connected to the previous transmission equipment of the vehicle with the 
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help of an inverter. The front-wheel drive design in this design is shown in 

Figure 5. 

 

 

 
Figure 6. Current Transmission Drive Rear-Wheel Drive Electric Vehicle Model 

 

Due to design constraints, the drive system used in the electric vehicle 

conversion may have to be implemented as rear-wheel drive. In this case, the 

application design is made to the vehicle's existing buddy-drive transmission 

system, as seen in Figure 6. 

 

 

Unit costs and calculation methods 

There are various design models for the conversion of internal combustion 

fossil fuel vehicle engines to electric vehicles. The calculation parameters to 

be included in the costs also vary depending on the design models. The total 

(TM) cost calculation formula to be used in the electric vehicle conversion 

can be expressed as equation (3). 

 

 
 

Here, total cost TM, fixed cost SM, maintenance cost BM, i indicates the 

economic life of the vehicle, j indicates the main parts of the vehicle and ω is 

a binary variable indicating whether there is a periodic cost. 

SMi indicates the electric motor, battery system, high voltage system, heat 

pump, air conditioning systems, brake systems that will be added to the 

vehicle to be transformed in the i. period. In this model, SMi=1 is accepted 

and indicates the initial investment made in the first period. 

ωDMi indicates the costs incurred in the i. period, such as the low voltage 

system, reducer and connection elements, application unit labour, which are 

independent of each other. Here, ω indicates whether there is a cost in the i. 

period and is calculated as shown in equation (4). 
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 This expression showing the maintenance cost shows the total of the 

maintenance costs that may occur in the j.th part in the i. period, which are 

independent from each other but must be done at certain intervals. In 

general, these costs consist of maintenance in the battery and high voltage 

system, and the ω parameter shows that the cost will be done in the relevant 

period. 

 

 
 

The parameter β is the probability of failure or maintenance cost  that 

may occur due to the j.th part in the i. period. This parameter consists of the 

sum of the failure probability of each j.th part, which consists of decimal 

numbers ranging from 0 to 1, that may occur independently of the i. periods. 

The total failure probability can be calculated from the probability table 

obtained from Table 3. In other words, in the calculation of the distribution 

in the probability calculation, the interval values can be added to the model 

from the values of Table 3. While the exponential distribution is generally 

preferred for these probabilities for electrical devices, this uniform 

distribution is preferred for automobile type vehicles. The failure 

probabilities of each part occur independently of each other. The probability 

of a failure occurring and the occurrence of another failure not related to this 

failure are independent events. 

 

 

RESEARCH FINDINGS 

 

As mentioned before, the power unit of electric vehicles is expressed in kW 

(kiloWatt), while the power unit of internal combustion fossil fuel vehicles is 

expressed in HP (Horse Power). Expressing different power units in kW, 

which is the common power unit, will provide significant results in terms of 

comparison. Therefore, determining both fuel and power consumption units 

in kW will ensure that they are evaluated in a common way. In order to 

express these two power units in common kW, 1 HP = 0.7457 kW is used as 

the conversion coefficient. The engine power comparison of internal 

combustion engines and electric vehicles is shown in Table 9. A point to be 

noted here is that the type of fossil fuel used in internal combustion fossil 

fuel vehicles is an important variable in determining the engine power. A 

similar situation varies depending on whether the engine used in electric 

motors is direct current (DC) or alternating current (AC). 

The cost model calculation proposed in this study was made according to the 

processes to be followed in the vehicle equipment to be used in the 
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conversion of a 1400cc internal combustion fossil fuel vehicle into an 

electric vehicle. In order to avoid any power loss in the vehicle to be 

converted, the power of the electric vehicle design should be at least as much 

as the power provided by the fossil fuel vehicle. The comparative power and 

torque amounts of the engines may not be very meaningful unless compared 

with equivalent vehicles. These calculations depend on many parameters, 

from the compression ratios of the fuels to the gear reapers of the 

transmissions. In order to overcome this issue, some preliminary 

assumptions were made and the experimental formulation was established. 

In these calculations, the torque and kW calculation of a vehicle with an 

accepted vehicle weight of 1100 kg was taken as a preliminary assumption. 

 
Table 10. Power Comparison of Electric Vehicles and Internal Combustion Fossil 

Fuel Vehicles 

Vehicle Type Power of 

Motor 

(kW) 

Power of 

Motor (HP) 

Explanation 

Electric 

Vehicle (EV) 

50 - 150 

kW 

67 - 200 HP Small and medium 

segment electric 

vehicles. 

Electric 

Vehicle (EV) 

150 - 300 

kW 

200 - 402 HP Mid-range to high-end 

electric vehicles. 

Electric 

Vehicle (EV) 

300 - 1000 

kW 

402 - 1340 

HP 

Luxury, sports or high-

performance EVs. 

Internal 

Combustion 

Engine 

(ICM) 

40 - 70 

kW 

54 - 94 HP Small engine city 

vehicles. 

Internal 

Combustion 

Engine 

(ICM) 

70 - 150 

kW 

94 - 201 HP Mid-range vehicles 

(sedan, hatchback, etc.). 

Internal 

Combustion 

Engine 

(ICM) 

150 - 300 

kW 

201 - 402 HP Luxury and sports 

vehicles. 

Internal 

Combustion 

Engine 

(ICM) 

300 - 600 

kW 

402 - 804 HP Luxury and sports 

vehicles. 

Internal 

Combustion 

Engine 

(ICM) 

600 - 1200 

kW 

804 - 1609 

HP 

Super sports cars, 

hypercars. 
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Both technologies have their advantages and disadvantages; electric vehicles 

generally stand out with their lower maintenance requirements and 

environmentally friendly features, while internal combustion vehicles 

generally offer longer range and faster refuelling. 

 

 

 
Figure 7. Torque Graph of Electric Vehicle and Internal Combustion Fossil Fuel 

Passenger Vehicle, (Heywood, 1988a, 1988b; Husain, 2021) 

 

When Figure 7 is examined, it is seen that the torque value observed in the 

low-speed range of internal combustion engines between 0 and 1000 rpm is 

low, and as the speed increases between 1000 and 4000 rpm, the torque 

value increases to a certain point, and then decreases after 5000 rpm. When 

electric vehicles are examined, it is seen that they produce almost the same 

amount of torque at a constant level between 0 and approximately 3000 rpm, 

and decreases after approximately 5000 rpm. 

Comparing the electric vehicle conversion compared in terms of the power 

they consume in terms of costs and calculating the payback period of the 

investment amount is important in terms of investment profitability. In the 

conversion of internal combustion vehicles to electric vehicles, how long it 

will take to amortize the vehicle conversion investment and the investment 

payback period should be calculated with the break-even point analysis. 

According to the break-even analysis to be made, it is among the points to be 

considered in terms of how long it will take to recover the conversion 

investment and the benefits it will provide. 
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Table 11. Comparison of Internal Combustion Engine and Electric Passenger 

Vehicle Torques 

Features Internal Combustion Engine Electric Motor 

Maximum Torque 
Range 

Mid RPM (2000-4000 RPM) Instant (from 0 RPM) 

Tork Slope  Parabolic (rises and falls) 
Steady and then 
drops 

Low Speed 
Performance 

Low Very High 

Response Time Delayed Instant 

 

The basic initial investment costs in the conversion costs of internal 

combustion vehicles to electric vehicles can be listed as electric motor, 

electrical equipment, battery pack and assembly-engineering project 

services. Although the basic initial investment costs vary depending on the 

type of vehicle to be converted, its features and the purpose of use, if 

expressed in USD, they range between approximately 10,000 and 30,000 

USD. Among these costs, the electric motor is 1,000-5,000 USD, the 

electrical equipment is 1,000-3,000 USD, the battery pack is 5,000-15,000 

USD and the assembly-engineering project services are 2,000-3,000 USD. In 

order to evaluate the conversion costs, it is necessary to make a break-even 

analysis of this investment. This analysis is important for decision makers in 

terms of knowing how long it will take to return the conversion investment 

cost. Because decision makers want to know how long it will take to pay 

back this investment and whether the investment is profitable (Blank & 

Tarquin, 2008; Leland Blank & Tarquin, 2005). 

 

 
 

Equation (6) can be used to calculate the break-even point for the investment 

to be made for the conversion of an internal combustion fossil fuel engine to 

an electric vehicle engine. For example, if the annual fossil fuel cost of an 

internal combustion vehicle is calculated as 2,000 USD, the annual 

electricity cost for an electric vehicle is 500 USD, the annual savings are 

1,500 USD, and the initial investment cost of the conversion is 20,000 USD, 

assuming that it is calculated with the help of equation (3), the break-even 

analysis can be calculated as follows. 

 

Fuel savings = 2000 – 500 = 1500 USD 
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The graph of the calculated transformation cost over the years is as shown in 

Figure 8. However, the calculations are not always made according to fixed 

costs and annual increase rates are also taken into account. 

 

 
Figure 8. Internal Combustion Engine Electric Vehicle Conversion Cost Break-Even 

Analysis 

 

In the sample calculation, it was assumed that fuel and electricity prices were 

fixed. Fuel and electricity prices are not fixed due to some cost increases 

during the year. In this case, electric vehicle conversion points need to be 

recalculated according to these variable costs. In this example, if the annual 

increase in fossil fuel costs is 5% and the electricity increase fee is 3%, the 

break-even point can be calculated as follows using the cumulative interest 

formula. 

 

 
 

In this formula in Equation (7), where A is the total income to be calculated 

in n years, r is the increase rate and a is the initial cost, the calculated value 

is approximately 10 years. The graph of this calculation is as seen in Figure 

9. 



75 

 

 
Figure 9. Internal Combustion Engine Electric Vehicle Conversion Dynamic Cost 

Break-Even Analysis 

 

During the years that vehicles are used, their components wear out and their 

economic value decreases. If the conversion cost is recalculated with this 

type of cost that can be collected under depreciation expenses, the break-

even point analysis may change, and the annual revaluation rate is ignored in 

this depreciation calculation. 

 
Figure 10. Internal Combustion Engine Electric Vehicle Conversion Dynamic Cost 

Break-Even Analysis Including Depreciation 

 

When the annual depreciation cost is determined as 10%, the calculated 

break-even point for the conversion cost of the vehicle is moved further. The 

main reason for this is the loss of the economic value of the vehicle in the 

depreciation calculation. The calculated depreciation-inclusive value is 

shown as 14 years with the orange line in Figure 10. As can be understood 

from Figure 10, a non-linear relationship is evident between the cost and 
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economic value of the vehicle. The economic return of the conversion costs 

of the electric vehicle is extended by approximately 4 years due to 

depreciation expenses. If the depreciation expense rate is selected as high, 

this return period is extended even further. Considering this situation, it can 

be concluded that the depreciation cost moves the break-even point forward 

and the conversion is a long-term investment. According to this table, the 

experiment was designed by selecting electric motors with equal power and 

torque values and the calculations were made accordingly. According to 

these calculations, the specifications of the selected electric motor were 

determined as 65kW 60Volt 3000 rpm DC. 

 

 

 

CONCLUSION ND REMAKS 

 

Electric vehicles have become widespread in the world with the 

developments they have shown in recent years along with the advancement 

of technology. Especially when combined with the developments in battery 

technology and semiconductor technology, it is seen that these developments 

have accelerated. Internal combustion fossil fuel vehicles have been in 

human life for almost two centuries since they started to be used in the early 

19th century. Developing electrical energy storage systems and green energy 

movements have started to accelerate the use of electric vehicles in recent 

years. Climate and geographical changes in the production of fossil fuels, 

political instability, developing environmental awareness, and socio-

economic factors are making the use of electric vehicles even more 

widespread. Internal combustion vehicles produced over the years are 

quickly scrapped due to the end of their economic life or the fact that their 

repair costs have started to reach high amounts. By removing the engine 

assemblies of internal combustion fossil fuel vehicles from these vehicles 

and replacing them with electric motors with appropriate equipment and 

hardware, these scrapped automobiles can be brought back into the 

economy. In this study, an economic analysis of the conversion of internal 

combustion fossil fuel vehicles to electric vehicles has been made. As can be 

seen, it has been seen as a result of the economic analyses that the 

conversion costs are a long-term investment and that the return on the 

conversion of internal combustion vehicles to electric vehicles cannot be 

obtained in the short term. Although the study is a long-term investment, it is 

a solution to the problems caused by the repair costs of an existing vehicle or 

the engine becoming unusable due to other reasons. In addition, it can be 

understood as a result of this study that the emission values released into the 

atmosphere by internal combustion fossil fuel vehicles can be reduced by 

converting to electric vehicles. With this transformation, new economic 



77 

 

models that will also contribute to sustainable green environmental climate 

policies can be developed. 
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ABSTRACT 

In this work, the sintering behavior of Algerian natural phosphate raw from the 

Jebel El Onk region of Tebessa was studied at temperatures ranging from 1000˚C 

to 1400˚C in air. The effects of temperature on the densification, porosity, 

shrinkage and Vickers hardness of the raw material were evaluated. Upon heat 

treatment at 1200˚C, a high density of phosphate was determined while higher 

temperatures allowed better porosity formation of natural phosphate. Shrinkage 

measurements are consistent with thermal analysis results. High heat treatment 

has a positive effect on the hardness of the phosphate grains. 

Keywords – Natural Phosphate, Porosity, Density, Sintering Temperature, 

Bioceramic. 

 

 

INTRODUCTION 

 

    Algeria has abundant and diverse mineral wealth, as its interior is rich in 

important materials such as iron, feldspar, diatomite, dolomite, quartz, kaolin 

and phosphates.... Which are used in many industrial fields, such as the 

environmental field in purifying water from toxic materials such as cadmium 

and nickel, as well as building materials, ceramics and glass, in addition to 

catalysts in chemical processes. Algeria has important areas of phosphate in 

the east of the country in the Tebessa region, and contains a large number of 

deposits of phosphorous minerals of economic importance, namely the 

deposits of djebel Kouif, djebel Dir and djebel Onk. Due to its wide uses in 

several different fields. Recently, phosphate ores have received a great deal of 

attention due to its important composition represented by fluorideapatite, 

which is characterized by its good biological properties, biodegradability and 

stimulates the formation of bone tissue. Natural phosphate is used in the 

manufacture of bioceramics and glass ceramics. In fact, the present work deals 

with the study of the thermal behaviour of phosphate ore, extracted from the 

Kaf El Senoun deposits in djebel Ank (Tebessa), and the evaluation of the 

effect of sintering temperature on the on the density properties, porosity and 

shrinkage properties, as well as the hardness, with the aim of exploiting it in 

the field of bioceramics industry. 
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MATERIALS AND METHOD 

 

    The raw material used in this work is phosphate rock from Kef Essennoun, 

mining basin of Djebel el Onk (south of Tébessa). A systematic phosphate 

sampling was carried out at the level of three deposit layers. The blocks were 

ground using a Fritsch P6 model planetary mill with a 250ml bowl and 13 mm 

diameter balls for 3h, at a speed of rotation of 350 rpm. The powder obtained 

is dried at 120˚C using an oven for 24 hours. The samples were sintered at 

1000 1100, 1200, 1300 and 1400˚C in a Nabertherm muffle furnace 

(LHT8/18) in the open air for two hours and a temperature rise rate of 

10˚C/min, then ground manually and sieved through a 125μm mesh sieve. 

Thermal Analysis (TGA / DTA) of natural powder was carried out by TA 

instruments Q600 SDT), from room temperature to 1300˚C with a temperature 

ramp of 10˚C/min. The bulk densities of the natural sintered pellets were 

measured using a helium gas pycnometer (Metromeritics, AccuPyc 1340, 

USA). The densification and porosity of pellets were measured according to 

equation (1) and equation (2) respectively, where, db is bulk densities and dt is 

the theoretical densities. The linear shrinkage (L.S.%) of sintered pellet was  

determined through  the equation (3) [1]. where: D1 and D2 represent the 

diameters of the samples before and  after sintering,  respectively. Standard 

Vickers Zwick tester evaluated the Vickers hardness values of the sintered 

pellets By applying a load of 1 Newton for 10 seconds to the surface of the 

sample. 
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RESULTS AND DISCUSSION 

 

A. Thermal analysis 

The thermal curves of the raw phosphate are shown in fig.1. Five distinct mass 

losses can be observed between 50 and 1300˚C for phosphate ores. The initial 

weight loss of the phosphate was slight, at temperatures below 220˚C, which 

was due to the dehydration reaction [2-4]. A weak endothermic peak at 

approximately 86.44˚C in the dta curves accompanied the weight loss. The 

second and third mass losses occur between 290 and 710˚C, and are significant 

with an endothermic peak appearing at 683.44˚C on the tda curve; this 

corresponds to the combustion of organic materials, and the partial 
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carbonization of organic components begins or changes in the material’s 

crystal structure [2, 4, 5]. A significant mass loss was also observed between 

720˚C up to 1300˚C. The dta spectrum shows a large endothermic peak 

located at 789˚C and 1148 ˚C. These peaks can be explained by the total 

decomposition of the carbonates, metals oxidize and chemical decomposition 

of phosphate resulting in the formation of a new phase [2-4]. 
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Fig. 1 Thermal analysis (TG/TDA) curves of phosphate ore sample sintered at 

1300˚C. 

 

B. Density and porosity analysis  

Figure 2 shows the variation of bulk density of the natural phosphate as a 

function of the sintering temperatures. We can notice that the bulk density of 

the natural pellet increase with increasing of sintering temperature from 1000 

and 1200˚C. The bulk density was 2.65, 2.75 and 2.82 g/cm3, respectively. For 

the high temperature range from 1200˚C to 1400˚C, we can observe a decrease 

in the bulk density from 2.88 to 2.4 g/cm3 respectively. The variation of 

porosity and densification curve of the sintered natural bioceramic pellet 

shows in fig.3. It can be observed that the densification of the samples 

increases and the porosity of the samples decreases with the increase of the 

sintering temperature in the low temperatures ranging from 1000˚C to 1200˚C. 

The densification and porosity values of the samples ranged from 84.12 to 

88.88% and from 15.88 to 11.12% respectively. At high temperatures ranging 

from 1200˚C to 1400˚C, a gradual and regular decrease in the density values 

was observed, ranging from 88.88 to 76.19%, while the porosity of the 

samples increased from 11.12 to 23.81%. The change in density and porosity 

values of the samples by a small percentage of 4% and a slight percentage of 
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14% at low and high temperatures respectively can be attributed to the 

formation of crystalline phases, which is responsible for the increase in density 

and to release of gases outside the sample. 

1000 1100 1200 1300 1400

2,4

2,5

2,6

2,7

2,8

temperature (oC)

76

78

80

82

84

86

88

90

 D
en

si
fi

ca
ti

o
n

 (
%

)

D
en

si
ty

 (
g

/c
m

3
)

 

Fig.2  Bulk density curves of sintered bioceramic pellet at different temperature 
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Fig.3  Densification and porosity curves of sintered bioceramic pellet at different 

temperature 

C. Shrinkage measurements 

Fig.  4  shows  the  variation of the  shrinkage  obtained from  the  sintered 

natural bioceramic samples  at various  temperatures. The shrinkage curve 

show two different phases; It can be seen that the shrinkage of the samples 

varies between 9 and 11.12% from 1000˚C to 1100˚C. This increase in 
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shrinkage is generally attributed to the release of CO2 and SO3 gases outside 

the sample and to produce a news oxides phases. From 1100˚C the shrinkage 

starts to decrease and reaches a value of 10% at 1200˚C. The shrinkage is 

almost stable between 1200˚C and 1400˚C with an average value of 10.3%. 

This is due to the partial decomposition of Fluorapatite in β-TCP and CaF2 

and the formation of a new phase crystals. These results are consistent with 

the thermal analysis results of natural phosphate. 
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Fig.4 Shrinkage of the samples as a function of the temperature 

D. Microhardness analysis 

Table 1 shows the measurement of the Vickers hardness of bioceramic 

samples sintered from 1000 at 1400˚C. The hardness of the natural phosphate 

samples ranged from 0.71 GPa to 1.29 GPa with increasing sintering 

temperatures. It can be noted that the effect of sintering temperature on the 

hardness of phosphate samples is not the same as its effect on the previous 

properties, density, porosity and shrinkage. The sintering temperature 

improves the hardness of natural phosphate. 

Table 1. The Vickers hardness of natural bioceramic sintered at different 

temperature. 

Temperature (˚C) 1000 1100 1200 1300 1400 

Vickers Hardness (GPa) 0.71 0.8 0.89 1.23 1.29 
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CONCLUSION 

In this research, the thermal behavior of algerian mineral phosphate was 

studied and the effect of high heat treatment on the properties of density, 

porosity, shrinkage and vickers hardness was investigated. The heat treatment 

contributed to the weight loss of the prepared phosphate sample as a result of 

the decomposition of organic matter and the release of carbon and the 

formation of new materials. The heat treatment at 1400˚C contributed to the 

occurrence of pores of natural phosphate samples by approximatelyby 24%, 

with a density estimated at 76 g/cm3. the heat treatment led to differences in 

the degree of shrinkage, which is consistent with the thermal behavior of 

phosphate. In addition, high heat treatment allows for better vickers hardness 

of raw phosphate. 
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ABSTRACT 
 

Laminated composites are extensively employed in marine, automotive, 

aerospace, military, and various other engineering applications due to their 

inherent tailorability, which allows customization to meet specific design 

requirements. The accurate determination of the buckling load capacity of 

composite plates under in-plane compressive loads is a critical aspect of 

designing robust composite structures. This study focuses on evaluating the 

critical buckling load factor of carbon/epoxy laminated composite plates 

with 16 and 64 layers, subjected to uniaxial and biaxial loading conditions. 

The composite plates under consideration are simply supported along all 

four edges. 

The investigation emphasizes the influence of load ratios (Nx/Ny) on the 

critical buckling load factor. Finite element analyses were conducted using 

ANSYS 17.2, while analytical computations were performed with 

Mathematica based on classical lamination plate theory. Comparative 

assessments of analytical and numerical results were made, including a 

validation against existing literature. The findings reveal that the critical 

buckling load values obtained via analytical methods and finite element 

simulations exhibit high agreement, with discrepancies limited to 

approximately 3% under identical orientation angles. 

For the loading condition LC2 (uniaxial loading, Ny = 1), the critical 

buckling load factor increases significantly with higher mode numbers. 

Conversely, the highest critical buckling load factor was observed under 

LC1 (uniaxial loading, Nx = 1), whereas the lowest was associated with LC5 

(biaxial loading, Nx = 1, Ny = 2) for the first buckling mode.  

 

Keywords – Laminated Composite, Buckling Load, Finite Element Analysis, 

Buckling Mode, Carbon/Epoxy. 

 

 

INTRODUCTION 

 

Laminated composites are widely utilized in marine, automotive, 

aerospace, military, and various other engineering applications due to their 

exceptional mechanical properties, such as high specific modulus (ratio of 

Young’s modulus to density) and high specific strength (ratio of strength to 

density). Beyond these attributes, fiber-reinforced composites offer inherent 

tailorability, including adjustable fiber orientation and stacking sequences, 

providing significant design flexibility compared to isotropic materials. Key 

mechanical design considerations for composite structures include 

deflection, buckling load, resonance frequency, impact resistance, fatigue 

life, and dimensional stability. Among these, the buckling load capacity 
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under in-plane compressive loads is particularly critical, as buckling often 

results in premature structural failure. Consequently, maximizing the 

buckling load has been a primary focus of extensive research. 

In this context, Haftka and Le Riche analyzed the buckling behavior of 

graphite/epoxy symmetric balanced laminated composites under axial and 

biaxial loading, optimizing stacking sequences to maximize buckling loads 

while adhering to strain failure constraints [1]. Soykasap and Karakaya 

studied the buckling load maximization of symmetric laminated composite 

plates with four-edge simply supported boundary conditions under biaxial 

compressive loads, employing classical laminated plate theory (CLPT) to 

model buckling behavior [2, 3]. Deveci et al. introduced a hybrid 

optimization algorithm combining genetic algorithms and trust region 

reflective algorithms to determine the optimal stacking sequence for 

laminated composite plates under puck failure criteria. Their methodology 

utilized CLPT to define the objective function for optimization [4]. Topal 

and Uzman addressed both single- and multi-objective optimization for 

maximizing buckling load and critical temperature capacity, employing first-

order shear deformation theory (FSDT) in their formulations while 

investigating the effects of aspect ratio, lay-up configuration, boundary 

conditions, and thermal expansion coefficients on buckling behavior [5-7]. 

The buckling behavior of laminated composite plates is influenced by 

several parameters, including plate aspect ratio, material properties, ply 

orientation, and boundary conditions. Complex geometries, in particular, 

pose challenges for analytical solutions. Experimental methods, while 

accurate, are often time-consuming and costly. Thus, numerical approaches, 

particularly finite element methods (FEM), are preferred for the design and 

analysis of composite structures. 

In this regard, Panda and Ramachandra explored the influence of plate 

aspect ratio, boundary conditions, length-to-thickness ratio, and non-uniform 

in-plane loading on the buckling behavior of rectangular composite plates 

without cutouts [8]. Hu and Lin conducted numerical analyses using 

ABAQUS to study the effects of boundary conditions and circular cutouts on 

fiber orientation and buckling load for symmetrically laminated composite 

plates under uniaxial compression [9]. Baba and Baltacı examined the 

buckling behavior of laminated composite plates with central circular cutouts 

under uniaxial compression, investigating the effects of anti-symmetric 

laminate configurations, length-to-thickness ratios, and boundary conditions 

using ANSYS FEM software [10, 11]. 

In the present study, the critical buckling load factor of carbon/epoxy 

laminated composite plates with 16 and 64 layers, and four-edge simply 

supported boundary conditions, is evaluated under uniaxial and biaxial 

loading conditions. The effect of load ratios (Nx/Ny) on the critical buckling 

load factor is analyzed using analytically with Mathematica and numerically 

finite element software (ANSYS 17.2). The findings contribute to 
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understanding the buckling behavior of laminated composites and provide 

insights into their design and optimization. 

 

MATERIALS AND METHOD 

 

Finite element critical buckling analysis of carbon/epoxy laminated 

composite plates under uniaxial and biaxial loading conditions are 

considered. The elastic properties of  carbon/epoxy material gives in Table1. 

 

Table 1. Carbon/Epoxy material mechanical properties [12] 

 
Parameters 

 

 

 Carbon- 
    Epoxy 

E1    Longitudinal modulus (GPa)  181 

E2    Transverse Modulus (GPa)       10.3 

G12  In-plane shear modulus (GPa)       7.17 

V12  Poisson ratio 0.28 

ρ    Material density (kg/m3) 1600 

  
Buckling formulation based on CLPT of laminated composite plate which is 

four edge simply supported can be defined as [12] 
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where Nx ,Ny and Nxy  are normal and shear force, m and n are half-waves in 

the x and y directions, respectively, a and b are length and width of plate and 

D11, D12, D22, D66 are the terms of bending stiffnesses and can be expressed 

as in the following form 
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6,2,1, =ji                                   

where h is one ply thickness, N is total play number and ij
Q  is the 

transformed reduced stiffness matrix.  

The values of m and n are taken to be 1 or 2 in order to result in a good 

estimate of buckling load capacity. Accordingly, the smallest of  b (1,1), 

b  (1,2), b (2,1), b (2,2) yields cb   

( )nmbcb ,min  =
 

After obtaining the critical buckling load factor once, critical buckling loads 

can be determined by means of 
,x cr cb xN N=  and 

,y cr cb yN N=  

expressions. 

 

Finite Element Analysis (FEA) 

Buckling analysis of  laminated composite plate was investigated utilizing 

FEM. Carbon/epoxy laminated composite plate under simply supported 

boundary condition and different load ratios (Nx / Ny) were analyzed using 

ANSYS Workbench 17.2 finite element software. Figure 1 shows the 

geometric models and meshes of the laminated composite plate. The meshes 

were improved utilizing eight-noded shell181 elements, having six degrees 

of freedom at each node (translations in the nodal x, y, and z directions and 

rotations about the nodal x, y, and z axes). Finally, a total of 8128 elements 

and 8320 nodes used, with one elements through the thickness, sixty-four 

elements through the width and one hundred twenty seven element along the 

length of the plate. Materials given in Table 1 were utilized in the modal 

analysis. 
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Fig. 1 Material geometry and mesh of finite element model 

 

PROBLEM DEFINITION 

 

Determination of the buckling load capacity of a composite plate under in-

plane compressive loads is critical for the design of the composite structures 

because the buckling could yield a premature failure of the structure. The 

main goal of this study is to determine the critical buckling load factor of 16 

and 64 layered carbon/ epoxy laminated composite plate under uniaxial and 

biaxial loading conditions. The considered composite plates are simply 

supported on four sides with length of a and width of b , and subjected to in-

plane loads per unit length Nx and Ny  as shown in Figure 2. 
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Fig. 2 Laminated composite subjected to in-plane loads [13] 

 

Each layer is 0.127 mm thickness and the width and length of plate equals to 

0.254 m and 0.508 m, respectively. Nx has been taken as 1 N/m  in the 

design process. Ny have been calculated from the load ratio (Nx /Ny). The 

problems including different load cases are given in Table 2. 

 

Table 2. Laminated composite plate load cases 

Load case a (m) b (m) Nx (N/m) Ny  (N/m) 

LC1 0.508 0.254 1 0 

LC2 0.508 0.254 0 1 

LC3 0.508 0.254 1 1 

LC4 0.508 0.254 1 0.5 

LC5 0.508 0.254 1 2 
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RESULTS AND DISCUSSION 

 
This section presents the results of buckling analyses for various load 

cases (LC1–LC5) using the Classical Laminated Plate Theory (CLPT) 

implemented in Mathematica and validated with ANSYS Workbench. The 

geometrical dimensions of the laminated plates are defined as a=0.508m, 

b=0.254 m and h=0.000127 m. Table 3 provides the critical buckling load 

factors for 16-layered and 64-layered carbon/epoxy laminated composites 

with stacking sequences [902/45/90/454]s , [906/±452/904/±452/9014]s and  

[±45/9010/±45/902/±45/902/±45/9010]s as computed using ANSYS and 

Mathematica software. The analysis is based on the CLPT framework, with 

Load Case 3 (LC3) employed as the reference scenario for designing the 

composite plates. 

The results demonstrate that the critical buckling load factors obtained 

through analytical calculations and numerical simulations are in close 

agreement with those reported in the literature [12] for the same orientation 

angles. This alignment confirms the accuracy and reliability of the 

Mathematica-based CLPT implementation and the finite element analysis 

performed using ANSYS 17.2. Both methods provide consistent and 

validated solutions for the studied benchmark problems. 

 

Table 3. Comparison of critical buckling load factor for 16 layered and 64 layered 

symmetric carbon/epoxy laminates 

Stacking sequence Λcritic 

([12]) 

Λcritic 

Mathematica 

(Present) 

Λcritic 

Ansys 

(Present) 

[902/45/90/454]s 14673.2 14673.2 14195 

[906/±452/904/±452/9014]s 940665 940665 957500 

[±45/9010/±45/902/±45/902/±45/9010]s 940665 940665 957500 

 
Figure 3 illustrates the mode shapes of a 64-layer symmetric carbon/epoxy 

composite plate under biaxial compressive loading, analyzed for two 

stacking sequences: [906/±452/904/±452/9014]s  and 

[±45/9010/±45/902/±45/902/±45/9010]s . The mode shapes predominantly 
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appear along the plate's longitudinal direction, attributed to the high length-

to-width ratio. Notably, the mode shapes remain consistent across the 

different stacking sequences, indicating that the stacking configuration does 

not significantly influence the mode shape under these loading conditions. 

 

 Mode 1 Mode 2 Mode 3 Mode 4 

[906/±452/904/±452/

9014]s 
    

[±45/9010/±45/902/

±45/902/±45/9010]s 
    

Fig. 3 Mode shape of 64 layered symmetric carbon/epoxy composite plate 

 
Table 4 shows the effect of different loading condition on critical buckling 

load factor for 16 layered carbon/epoxy laminate for [902/45/90/454]s 

stacking sequence.  
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Table 4. The effect of different load condition on critical buckling load factor for 16 

layered carbon/epoxy laminate 

Stacking 

sequence 

Loa

d 

case 

a 

(m) 

b 

(m) 

Nx 

(N/m

) 

Ny  

(N/m

) 

Λcritic 

Mathematic

a 

Λcritic 

Ansys 

[902/45/90/454

]s 

LC1 0.50

8 

0.25

4 

1 0 29346.4 29991 

LC2 0.50

8 

0.25

4 

0 1 18393.4 18861 

LC3 0.50

8 

0.25

4 

1 1 14673.2 14195 

LC4 0.50

8 

0.25

4 

1 0.5 19564.3 19026 

LC5 0.50

8 

0.25

4 

1 2 8174.87 8110.

4 
 

The critical buckling load factor is observed to vary within the range of 

29346.4 to 8174.87. The highest value is achieved under uniaxial loading 

conditions (LC1), while the lowest value corresponds to the biaxial loading 

condition (LC5). Across all cases, the results obtained from the CLPT-based 

Mathematica code and ANSYS finite element analysis exhibit strong 

agreement, with a deviation of approximately 3% between analytical and 

numerical analyses. Figures 4 and 5 provide a comprehensive overview of 

the critical buckling load factor values and corresponding mode shapes for 

each loading scenario (LC1–LC5), offering detailed insights into the 

buckling behavior under different loading conditions. 

Figure 4 clearly demonstrates that the critical buckling load factor for LC2, 

corresponding to uniaxial loading (Ny=1), exhibits a rapid increase with 

rising mode numbers. In contrast, the other load cases display a more 

gradual increase in critical buckling load factors as the mode number 

increases, indicating distinct buckling behaviors. 
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Fig. 4 Effect of load ratio on the critical buckling load factor of 16 layered 

carbon/epoxy plate 

An analysis of Figure 5 reveals that identical mode shapes occur for LC3 and 

LC5, suggesting a similar deformation pattern under these loading 

conditions. Additionally, the mode shapes for LC1 are consistent across 

different mode numbers, indicating a stable and uniform buckling behavior 

specific to this loading scenario. These observations highlight the influence 

of loading conditions on the buckling characteristics of laminated composite 

plates. 
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Fig. 5 Effect of load ratio on mode shape of 16 layered symmetric carbon/epoxy 

plate 

 

CONCLUSION 

 

This study investigates the critical buckling load factor of carbon/epoxy 

laminated composite plates with 16 and 64 layers, subjected to uniaxial and 

biaxial loading conditions. The plates are assumed to have four-edge simply 

supported boundary conditions. The influence of load ratios (Nx/Ny) on the 

critical buckling load factor is systematically analyzed. The design and 

analysis of the composite plates are performed using Mathematica and 

ANSYS 17.2 finite element software. 

The results demonstrate that the critical buckling load values obtained 

through analytical calculations and finite element simulations are in close 

agreement, with a deviation of approximately 3% for the evaluated 

orientation angles. For the uniaxial loading condition represented by LC2 
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(Ny = 1), the critical buckling load factor exhibits a rapid increase with 

higher mode numbers. Among the investigated cases, the highest critical 

buckling load factor is observed under the uniaxial loading condition LC1, 

while the lowest value is recorded for the biaxial loading condition LC5 

under mode 1. These findings provide valuable insights into the buckling 

behavior of laminated composite plates under various loading scenarios. 
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