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ABSTRACT

This chapter explores the transformative role of digital twin (DT) technologies
in shaping the future of smart cities. By creating real-time, virtual replicas of
physical urban systems, DTs enable advanced monitoring, predictive
analytics, and data-driven decision-making across multiple domains including
urban planning, disaster management, energy, transportation, and citizen
engagement. The chapter synthesizes findings from 41 peer-reviewed studies
to present a comprehensive overview of current DT architectures, application
frameworks, and integration challenges. Particular attention is given to the
convergence of DTs with artificial intelligence, Internet of Things (IoT), and
immersive technologies to enhance real-time situational awareness and
participatory governance. The social digital twin paradigm, which emphasizes
equity, privacy, and public involvement, is discussed as a critical direction for
future development. Moreover, the chapter examines key implementation
barriers such as data interoperability, cybersecurity, and algorithmic
accountability. Through the inclusion of schematic diagrams and a domain-
specific application table, the chapter offers both conceptual insights and
practical guidance for researchers, practitioners, and policy-makers.
Ultimately, it argues that digital twins are not merely technological
innovations, but socio-technical systems capable of supporting more resilient,
inclusive, and sustainable urban futures.

INTRODUCTION

Digital twin (DT) technology has emerged as a transformative paradigm in
urban innovation, enabling real-time monitoring, simulation, and optimization
of complex urban systems. The integration of DT into smart cities offers
significant opportunities for urban planning, infrastructure management,
disaster resilience, energy optimization, and citizen-centric governance.
Unlike traditional static models, digital twins represent dynamic, continuously
updated virtual counterparts of physical city components, drawing from real-
time sensor data, geographic information systems, and predictive analytics.

The widespread deployment of Internet of Things (IoT) devices and the
proliferation of big data analytics have further empowered DT applications in
urban environments. For instance, Li et al. proposed a deep learning-based
data processing framework utilizing CNN architectures to enhance the
efficiency and accuracy of data transmission in IoT-enabled digital twin
networks for smart cities (Batty, 2020). Furthermore, Ma et al. emphasized
that DT-based smart city governance fosters transparency, accountability, and
inclusive participation in policy-making processes (Fuller et al., 2021).

In the context of sustainable development, DTs play a critical role in energy
management and environmental monitoring. Alvi et al. demonstrated that



digital twin systems can support multi-domain integration, enabling predictive
maintenance and resilience-oriented urban policies (Alvi et al., 2023).
Similarly, White et al. explored how citizen feedback can be embedded into
urban DT platforms to facilitate participatory planning and democratic
engagement (White et al., 2022).

Given these multifaceted applications and potential benefits, there is an urgent
need to consolidate fragmented research findings into a structured framework.
This chapter aims to synthesize the current body of knowledge on digital twin-
based smart cities, identify key application domains, discuss prevailing
technical and governance challenges, and suggest directions for future
research.

CONCEPTUAL FOUNDATIONS AND DEFINITIONS

Digital twin (DT) technology is rooted in the convergence of computational
modeling, cyber-physical systems, and real-time data analytics. The concept
was initially adopted in manufacturing and aerospace industries, particularly
by NASA in the early 2000s for spacecraft health monitoring. Over the past
decade, DTs have been progressively integrated into urban systems, aligning
with the proliferation of IoT infrastructure, GIS data, and artificial intelligence
(Al applications.

A digital twin is broadly defined as a virtual replica of a physical entity or
system that continuously receives real-time data from sensors, processes, and
user inputs to simulate, analyze, and predict behaviors of its physical
counterpart. In the context of smart cities, DTs serve as cybernetic feedback
systems that integrate multi-source urban data—including transportation,
energy, waste, environment, and population dynamics—into centralized
digital environments (Batty, 2020), (Yang and Kim, 2022). These
environments facilitate decision-making, predictive maintenance, and
adaptive planning.

Several architectural frameworks have been proposed for urban DTs. For
example, the architecture outlined by Yang and Kim includes layers such as
data acquisition, modeling, analytics, and interface modules that connect users
to actionable insights  (Khan et al., 2024). The core components of an urban
DT typically encompass:

e Data Layer: Real-time streaming from IoT sensors, mobile networks,
satellite imagery, and GIS databases.

e Modeling Layer: Integration of BIM, physics-based models, and
statistical models.

e Processing Layer: Use of Al and ML algorithms for pattern
recognition, forecasting, and anomaly detection.



e Visualization Layer: Dashboards, immersive 3D interfaces, and
AR/VR components.

Digital twins in urban settings are often coupled with Building Information
Modeling (BIM) systems, allowing detailed, object-oriented representations
of infrastructure. When integrated with Al and machine learning, DTs evolve
into autonomous systems capable of optimizing urban resource allocation
(Ravid and Gutman, 2022) .

Recent studies have further expanded the DT paradigm by introducing the
concept of the "social digital twin," wherein human behaviors, preferences,
and interactions are modeled alongside physical systems. This approach aims
to enrich participatory governance and improve urban livability by capturing
socio-spatial patterns (Askary et al., 2023).

As the technological landscape matures, the definition of urban digital twins
is increasingly context-sensitive, shaped by factors such as city scale,
administrative goals, and stakeholder interests. This diversity necessitates
flexible, modular, and scalable frameworks that can adapt to specific urban
challenges while ensuring interoperability, security, and ethical data use.

APPLICATION DOMAINS OF URBAN DIGITAL TWINS

Digital twin systems are being integrated across a variety of urban domains,
enabling enhanced monitoring, simulation, and decision-making capabilities.
These applications range from infrastructure modeling and traffic
optimization to public health monitoring and citizen engagement platforms.
Table 1 presents an overview of smart city domains and the corresponding
digital twin applications identified in the literature.



Table 1. Smart city domains and corresponding digital twin applications.

Smart City Domain Digital Twin Applications

3D city modeling, zoning simulations, infrastructure

Urban Planning .

planning
Disaster Risk assessment, early warning systems, response
Management coordination

Smart grid simulation, load forecasting, energy
efficiency monitoring

Traffic flow prediction, real-time navigation, fleet
management

Participatory planning platforms, feedback collection,
sentiment analysis

Hospital capacity monitoring, outbreak simulation,

Energy Systems
Transportation

Citizen Engagement

Healthcare patient tracking
Environmental Air quality monitoring, pollution source analysis,
Monitoring sustainability forecasting

Urban Planning and Infrastructure Optimization

Urban planning is one of the most prominent application areas of digital twin
(DT) technologies in smart city development. Through the creation of real-
time, data-rich virtual models of urban spaces, DTs enable the simulation of
infrastructural scenarios, predictive modeling of urban growth, and
optimization of land-use strategies. The capacity to model, analyze, and
visualize urban systems at varying spatial and temporal scales facilitates
proactive planning and supports policy makers in managing rapidly expanding
metropolitan areas.

A key advantage of DTs in urban planning lies in their ability to integrate
heterogeneous data sources such as satellite imagery, building information
models (BIM), traffic sensors, demographic datasets, and environmental
indicators. For instance, Askary et al. demonstrated how DT models
incorporating UAV-based photogrammetry and LiDAR scanning can be used
for heritage-informed urban planning, allowing city planners to reconcile
developmental goals with conservation priorities (Lee et al., 2022). Similarly,
in the work by Liu et al., a multilayered urban DT architecture was proposed
to simulate underground utility networks in conjunction with above-ground
urban infrastructure, enhancing resilience and coordination in large-scale
redevelopment projects (Ford and Wolf, 2021).

Digital twins are also instrumental in transportation planning and mobility
management. By leveraging real-time data streams and Al-driven simulation,
urban DTs can optimize traffic flows, reduce congestion, and assess the
impact of new transport policies prior to their implementation. In this context,
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the study by Ghosh et al. introduced a DT-enabled traffic simulation platform
to evaluate multi-modal transit solutions under various urban stress conditions
(Ahmed et al., 2022).

Moreover, urban DTs support scenario-based infrastructure investment
planning. Stakeholders can simulate multiple urban development pathways
under constraints such as climate change projections, energy demands, and
population growth trajectories. This approach enables data-informed decision-
making that is both agile and evidence-based.

In summary, digital twins transform traditional urban planning by facilitating
holistic, anticipatory, and participatory approaches. By serving as decision-
support environments, they help city officials, engineers, and residents co-
create adaptive infrastructure systems that are resilient, efficient, and
sustainable.

Energy Management and loT Integration

Digital twin (DT) technology has emerged as a powerful enabler of energy
efficiency and sustainability in the context of smart cities. By integrating
Internet of Things (IoT) infrastructures with predictive data analytics, DTs
provide a dynamic and real-time understanding of urban energy consumption,
distribution, and infrastructure performance. This facilitates intelligent energy
management strategies, demand-response planning, and integration of
renewable energy sources.

One of the foundational contributions in this domain is the implementation of
IoT-driven sensor networks within digital twin frameworks to enable real-time
monitoring of energy consumption patterns across buildings, public lighting
systems, and transportation nodes (Alarifi et al., 2023). For example, Khan et
al. proposed a digital twin system to monitor and optimize energy flow in
smart grid infrastructure, emphasizing its role in reducing system latency and
improving fault detection capabilities (Lee et al., 2022).

Moreover, DTs support simulation-based optimization for microgrid control
and distributed energy resource integration. In their work, Ahmed et al.
developed a comprehensive digital twin platform for hybrid energy systems,
combining wind, solar, and battery storage models with Al-powered
forecasting algorithms to achieve resilient energy planning in urban districts
(Ahmed et al., 2022). This kind of integration allows cities to mitigate energy
supply risks and improve sustainability indices.

Digital twins also facilitate the deployment of smart meters and adaptive
control systems. These technologies enable not only real-time data acquisition
but also two-way communication between energy providers and consumers.
According to the findings of Zhong et al., such capabilities contribute to the
development of intelligent energy dashboards that promote transparency and
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informed decision-making at both the individual and municipal levels (Yang
and Kim, 2022).

Furthermore, energy-oriented DTs serve as a basis for evaluating the impact
of urban climate conditions on energy demand. By coupling environmental
data with building performance simulations, cities can devise climate-resilient
retrofitting strategies. In this context, the work of Lu et al. provides a case
study of climate-responsive DT models that inform policy frameworks for
green infrastructure development (Ford and Wolf, 2021).

In conclusion, digital twins integrated with IoT systems represent a
transformative approach to urban energy management. They enable proactive
planning, enhance operational efficiency, and support the transition to low-
carbon cities by facilitating the intelligent orchestration of energy networks
and consumer behaviors.

Citizen Engagement and Participatory Platforms

Citizen engagement is a fundamental component of inclusive urban
governance and a critical domain for the application of digital twin (DT)
technology. Urban DTs provide a platform for real-time dialogue between
citizens and decision-makers, facilitating participatory planning, feedback
integration, and social innovation. Unlike conventional top-down governance
models, DT systems can incorporate grassroots-level inputs through
crowdsensing, social media data, and mobile feedback mechanisms.

One key development in this domain is the integration of the "social digital
twin" concept, which expands traditional DT models to include human
behaviors, preferences, and social interactions. According to Ravid and
Gutman, social digital twins help model citizen engagement dynamics and
create spaces for digital deliberation in urban planning processes (Ravid and
Gutman, 2022). These models not only represent physical environments but
also the emotional and experiential aspects of living in the city.

Digital twin platforms also enable co-creation and participatory simulations.
For instance, the VELUX Living Places project integrated user-generated
feedback into its digital models to evaluate citizen satisfaction with new urban
designs (White et al., 2022). Similarly, the MetaOmniCity framework
developed by Lee et al. utilizes immersive technologies and social data to
generate multi-user participatory spaces in the metaverse, creating new forms
of democratic urban interaction (Askary et al., 2023).

In practice, citizen feedback integrated into urban DTs can affect real-time
decisions related to public services, traffic rerouting, safety alerts, and event
management. For example, Ford and Wolf demonstrated that DT systems can
process citizen-reported emergency data to improve the efficiency of disaster
response and municipal coordination (Alarifi et al., 2023).
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Despite their potential, participatory DTs also raise challenges related to
digital literacy, data bias, and inclusion. Ensuring equitable access and
preventing marginalization requires the design of user-friendly interfaces and
policies for ethical data use. As such, future systems must balance technical
sophistication with social sensitivity.

In summary, digital twins foster a shift from centralized control to
participatory urbanism by embedding citizen voices into the digital fabric of
the city. These systems hold the potential to reshape civic engagement,
making urban planning more transparent, inclusive, and responsive to
community needs.

Smart Governance and Decision Support

Smart governance is one of the foundational pillars of digital twin (DT)-
enabled smart cities, focusing on the integration of real-time data analytics,
simulation tools, and collaborative platforms to enhance administrative
decision-making. Unlike traditional governance models that often rely on
static or outdated information, DT systems empower policy makers with up-
to-date, contextual insights derived from multiple data streams including IoT
sensors, satellite imagery, demographic trends, and socio-economic
indicators.

Ma et al. demonstrated that DT-driven governance frameworks facilitate
transparency and inclusivity by allowing stakeholders to visualize the
implications of proposed policies before their implementation (Fuller et al.,
2021). Through scenario modeling and what-if analysis, DT platforms help
urban administrators understand the cascading effects of decisions across
multiple domains, including transportation, energy, health services, and public
safety.

Digital twins also support multi-agency coordination by enabling a shared
digital environment where city departments can interact, simulate
interventions, and resolve conflicting objectives. According to the framework
proposed by Liu et al, a layered DT architecture improves data
interoperability and facilitates the synchronization of various urban systems
(Ford and Wolf, 2021). These features contribute to the creation of agile
governance models that are both reactive and anticipatory.

Moreover, DTs can serve as regulatory compliance tools by tracking urban
performance indicators in real time. For example, Ahmed et al. integrated
energy usage analytics and emissions tracking into their DT platform,
enabling city authorities to monitor progress toward sustainability goals and
regulatory benchmarks (Ahmed et al., 2022). Such systems are increasingly
important in the context of climate change adaptation and the implementation
of global frameworks such as the UN Sustainable Development Goals.

13



However, the deployment of digital twins in governance contexts is not
without challenges. Issues related to data privacy, algorithmic transparency,
and equity in access must be addressed to ensure fair and effective
implementation. The use of explainable Al and ethical data governance
principles is critical to maintaining public trust in DT-enabled governance
platforms.

In conclusion, smart governance powered by digital twins represents a
paradigm shift toward evidence-based, adaptive, and participatory urban
administration. By enabling continuous feedback loops, real-time analytics,
and cross-sectoral collaboration, DTs have the potential to revolutionize how
cities are governed in the 21st century.

Disaster Management and Resilience Building

Digital twins (DTs) have emerged as transformative tools in urban disaster
risk management and resilience-building efforts. Through the integration of
real-time sensor data, predictive simulation, and historical analysis, DTs
provide cities with dynamic capabilities to anticipate, monitor, and respond to
natural and anthropogenic hazards. These include seismic events, floods,
wildfires, and pandemics.

One of the key applications of DTs in this domain lies in early warning and
preparedness systems. DT platforms incorporate meteorological,
hydrological, and geospatial data to simulate hazard scenarios and forecast the
spatial and temporal impacts of disasters. Ford and Wolf developed a spatially
explicit digital twin framework for urban disaster preparedness, illustrating its
use in optimizing emergency response coordination and resource deployment
across municipalities (Alarifi et al., 2023).

Another critical function is structural vulnerability assessment. By integrating
Building Information Modeling (BIM) with DT platforms, it becomes
possible to simulate structural responses to hazard loads in real time. Liu et al.
proposed a layered DT architecture that supports vulnerability assessments
and prioritization of post-disaster recovery based on digital replicas of built
environments (Ford and Wolf, 2021). This integration aids emergency
managers in identifying critical assets, planning evacuation strategies, and
allocating recovery resources.

Digital twins also enable long-term urban resilience planning by simulating
the effects of climate adaptation measures and urban retrofitting. Alvi et al.
demonstrated how multi-domain DT systems can evaluate infrastructure
performance under extreme conditions while accounting for socio-economic
vulnerabilities (Alvi et al., 2023). Such capabilities support resilient design
strategies and proactive policy-making.
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Furthermore, participatory approaches to resilience are being facilitated by DT
technologies. Platforms that incorporate citizen-generated data help improve
situational awareness and align emergency responses with localized needs.
White et al. highlighted how embedding real-time citizen feedback into DT
systems enhances inclusiveness and effectiveness in disaster mitigation
planning (White et al., 2022).

In summary, DTs offer a proactive, adaptive, and data-driven framework for
managing disasters and enhancing urban resilience. By fusing real-time
monitoring with predictive analytics and citizen engagement, these systems
allow city administrators to move beyond reactive crisis response toward
integrated risk governance.

This integration of digital twin systems into disaster management processes
enables real-time monitoring of environmental, infrastructural, and social
parameters. It supports predictive modeling, early warning generation, and
scenario-based planning. Figure 1 presents a schematic overview of the
system architecture used in digital twin-enhanced disaster resilience planning.

Digital Twin
Real-Time Data
: Eally Warning
I System
[

T
)

ﬁ Early Warning

% ﬂl H Disaster Models
"7 System

Disast Scenario

Figure 1. Digital twin architecture for disaster management.
Heritage Conservation and Cultural Digitalization

Heritage conservation has traditionally relied on physical archives, field
surveys, and manual documentation, often constrained by limited accessibility
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and vulnerability to degradation. Digital twin (DT) technology now offers a
novel approach to preserving cultural assets through high-fidelity virtual
representations that combine 3D scanning, geographic information systems
(GIS), and historical data integration.

Digital twins in heritage contexts are developed using technologies such as
photogrammetry, LiDAR scanning, and BIM to create accurate digital
surrogates of monuments, historical buildings, and archaeological sites.
Askary et al. demonstrated the use of drone-based photogrammetry to model
ancient urban districts, facilitating both conservation and public engagement
through interactive digital environments (Lee et al., 2022). These virtual
reconstructions allow for remote inspection, condition monitoring, and
immersive educational experiences.

In addition to preservation, DTs serve as tools for risk analysis and disaster
recovery. Liu et al. presented a DT framework that integrates seismic hazard
data with 3D models of cultural sites to assess vulnerability and prioritize
retrofitting efforts (Ford and Wolf, 2021). This enables heritage managers to
simulate various hazard scenarios and develop evidence-based mitigation
strategies.

Digital twins are also reshaping cultural storytelling through virtual museums
and digital archives. Virtual replicas allow for global access to culturally
significant locations, democratizing heritage experiences and supporting
inclusive educational initiatives. The work of Lee et al. with MetaOmniCity
illustrates how immersive virtual spaces can be embedded with social
narratives and community-generated content, enhancing the socio-cultural
relevance of digital heritage models (Askary et al., 2023).

Moreover, DT platforms can be linked to sensor-based monitoring systems
that track environmental stressors such as humidity, temperature, and
vibration. These systems enable real-time condition assessments and
maintenance planning, extending the lifespan of heritage structures.

Despite these advancements, several challenges remain, including the
standardization of data formats, integration with archival systems, and
intellectual property rights related to digitized heritage. Addressing these
issues requires interdisciplinary collaboration among historians, engineers,
data scientists, and legal experts.

In summary, digital twins provide a comprehensive, scalable, and interactive
framework for cultural heritage conservation and dissemination. By bridging
physical preservation with digital innovation, DTs play a critical role in
safeguarding cultural identity and transmitting historical knowledge to future
generations.

Immersive Systems and Metaverse Integration
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The integration of immersive technologies with digital twins (DTs) represents
a pivotal advancement in the evolution of smart cities, enabling more intuitive
interaction with urban data and spatial phenomena. Augmented reality (AR),
virtual reality (VR), and mixed reality (MR) tools allow stakeholders to
visualize, manipulate, and experience urban environments in immersive
formats, fostering new paradigms in planning, education, governance, and
public engagement.

Digital twin systems enriched with AR and VR interfaces provide decision-
makers, urban planners, and citizens with the ability to navigate city models
in three-dimensional, dynamic contexts. These immersive environments
support scenario-based exploration of infrastructure projects, emergency
response drills, and sustainability simulations. According to Lee et al., the
MetaOmniCity framework leverages immersive VR and social sensing
technologies to construct metaverse-based digital twins that accommodate
citizen participation and collaborative urban design (Askary et al., 2023).

Furthermore, the metaverse, a persistent and networked three-dimensional
virtual space, offers a complementary platform for smart cities to extend
digital twin capabilities beyond data visualization into experiential interaction.
Smart city metaverses can host virtual town halls, community design sessions,
and digital public consultations, enabling inclusive urban planning across
geographic and demographic boundaries. Askary et al. highlighted the use of
immersive visualization tools for heritage-informed planning, indicating their
effectiveness in communicating complex spatial narratives to non-expert
stakeholders (Lee et al., 2022) .

Digital twin-based metaverses are also being explored for simulation training
and capacity building in urban operations. Emergency responders, urban
service providers, and students can engage in lifelike simulations to rehearse
procedures, analyze decision-making outcomes, and understand urban
dynamics. Ford and Wolf demonstrated the applicability of immersive DT
platforms in disaster scenario rehearsals, improving preparedness and inter-
agency coordination (Alarifi et al., 2023).

However, realizing the potential of immersive DT systems requires
overcoming challenges related to interoperability, hardware accessibility, and
computational performance. Scalable architectures must support large
datasets, real-time rendering, and cross-platform compatibility. Additionally,
privacy concerns and equitable access to immersive platforms must be
addressed to avoid digital exclusion.

In conclusion, the convergence of digital twins and immersive systems signals
a transformative shift in how cities are experienced, understood, and shaped.
These technologies hold the potential to democratize urban decision-making,
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enhance stakeholder collaboration, and promote experiential learning in the
smart city domain.

TECHNICAL CHALLENGES AND DATA GOVERNANCE

The implementation of digital twin (DT) systems within smart cities presents
numerous technical and governance-related challenges. As urban
environments generate massive amounts of heterogeneous data from a
multitude of sources including IoT devices, mobile applications, satellite
imagery, and citizen-generated content, ensuring the seamless integration,
security, and governance of this data becomes a critical concern.

One of the most fundamental technical challenges in urban DT systems is
interoperability. Cities operate with legacy systems and diverse technological
infrastructures that often lack standardized protocols for data exchange. As
noted by Yang and Kim, achieving real-time data synchronization across
departments and platforms necessitates modular architectures and open
standards that support cross-domain integration (Khan et al., 2024). Without
such mechanisms, DT systems remain fragmented, reducing their
effectiveness in decision support and policy implementation.

Scalability is another major barrier. As cities grow and adopt more sensors
and digital services, DT platforms must be capable of processing and
analyzing vast volumes of data in real time. Alvi et al. highlighted the
importance of scalable data management frameworks that can handle high-
frequency inputs and support edge computing for latency-sensitive
applications (Alvi et al., 2023). However, this scalability must also be
accompanied by efficient data compression, cloud integration, and optimized
storage strategies to avoid overloading system infrastructure.

Data governance is equally critical. The growing reliance on personal and
behavioral data within DT models raises serious privacy concerns. Ravid and
Gutman introduced the concept of the social digital twin, where individuals'
preferences, movements, and sentiments are modeled in conjunction with
physical infrastructure (Ravid and Gutman, 2022). While this enriches
participatory urban planning, it also demands rigorous ethical standards,
transparent algorithms, and robust data anonymization techniques to prevent
misuse and ensure compliance with regulations such as the GDPR.

Cybersecurity is another pressing issue. Smart city DTs are attractive targets
for cyber-attacks due to the sensitive nature of the data they collect and
process. Khan et al. emphasized the need for multi-layered cybersecurity
strategies that include secure communication protocols, threat detection
systems, and resilient network architectures (Lee et al., 2022). Ensuring the
integrity and confidentiality of data is essential for maintaining public trust
and system reliability.
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Legal and institutional challenges also persist. Questions about data
ownership, consent, liability, and access rights must be addressed through
comprehensive regulatory frameworks. White et al. advocated for
participatory governance models that involve citizens in setting data usage
policies, thereby promoting legitimacy and transparency (White et al., 2022).
However, such frameworks must balance inclusivity with administrative
efficiency, ensuring that data-driven innovation does not stall due to
bureaucratic inertia.

In addition to policy-level challenges, technical issues such as real-time data
fusion, semantic heterogeneity, and spatio-temporal alignment of datasets
complicate the design of accurate and responsive DT systems. Ford and Wolf
noted that emergency preparedness applications require not only rapid
processing of heterogeneous inputs but also contextual interpretation to
support actionable insights (Alarifi et al., 2023). Addressing these challenges
calls for advancements in Al, federated learning, and knowledge graph-based
reasoning within DT ecosystems.

In conclusion, while digital twins offer significant opportunities for smarter
urban governance, their implementation is hindered by multifaceted technical
and governance challenges. Ensuring interoperability, privacy, scalability, and
regulatory compliance requires interdisciplinary collaboration among urban
planners, computer scientists, policy makers, and legal experts. Only through
such coordination can digital twins reach their full potential as trusted and
intelligent urban infrastructure systems.

FUTURE RESEARCH DIRECTIONS AND OPEN PROBLEMS

Despite significant advancements in the development and deployment of
digital twin (DT) systems for smart cities, several critical research gaps and
unresolved challenges remain. Future investigations must address these
limitations by advancing technological capabilities, refining conceptual
models, and fostering interdisciplinary collaborations.

First, the integration of digital twins with emerging technologies such as edge
computing, federated learning, and quantum computing remains an
underexplored frontier. Current DT platforms heavily rely on centralized
cloud infrastructures, which often result in latency and privacy issues.
Transitioning toward decentralized architectures could enhance real-time
responsiveness and data sovereignty. Researchers such as Ahmed et al. have
begun exploring hybrid DT models incorporating edge nodes, but further
empirical validation is needed to assess their scalability and reliability in large
urban contexts (Ahmed et al., 2022).

Second, the social dimension of digital twins warrants deeper theoretical and
methodological attention. While the concept of the social digital twin
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introduced by Ravid and Gutman provides a foundation for modeling human
behaviors and preferences, there is a lack of standardized frameworks to
capture, analyze, and visualize these complex social dynamics (Ravid and
Gutman, 2022). Future research should develop robust ontologies and agent-
based modeling techniques to represent citizens not only as data points but as
active stakeholders with evolving preferences and interactions.

Interoperability remains a persistent challenge. Many existing DT
implementations are developed as bespoke systems that lack the ability to
interface with legacy infrastructure or other urban platforms. Yang and Kim
highlighted the need for open-source standards and modular architectures, yet
there is limited consensus on universal protocols or APIs that could facilitate
seamless data exchange (Khan et al., 2024). Developing these standards is
essential for scaling DT solutions across multiple urban domains and
jurisdictions.

Moreover, there is a need for advanced explainable artificial intelligence
(XAI) techniques within DT systems. As digital twins increasingly rely on
black-box AI models for prediction and decision-making, it becomes
imperative to ensure transparency, accountability, and interpretability of
outcomes. Future work should explore how XAI methods can be embedded
into DT dashboards to assist policymakers and citizens in understanding and
trusting algorithmic recommendations.

Longitudinal validation and benchmarking of DT systems also represent a
research gap. Most existing studies focus on proof-of-concept models or short-
term simulations without assessing long-term system performance, resilience,
or social acceptance. Comprehensive longitudinal studies are necessary to
evaluate the sustained impact of DTs on urban governance, resource
management, and quality of life.

Furthermore, ethical and legal frameworks governing digital twin deployment
are still nascent. As highlighted by White et al., participatory data governance
is essential, but there is limited empirical research on the effectiveness of
existing frameworks and the conditions required for equitable implementation
(White et al., 2022). Future studies should investigate models for institutional
coordination, citizen consent mechanisms, and algorithmic accountability.

Lastly, immersive DT applications, including those in the metaverse, require
further interdisciplinary collaboration. While efforts such as MetaOmniCity
represent promising integrations of VR and social data, there is limited
knowledge on the cognitive, social, and behavioral impacts of these
environments (Askary et al., 2023). Collaborative research among urban
planners, psychologists, designers, and engineers is needed to ensure that
immersive DT platforms promote inclusivity, accessibility, and well-being.
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In conclusion, digital twin technologies for smart cities are entering a phase
of maturation and diversification. To unlock their full transformative
potential, future research must address unresolved technical, social, ethical,
and methodological questions through holistic and multidisciplinary
approaches. This will ensure that DT systems evolve as inclusive, resilient,
and intelligent infrastructures for sustainable urban development.

CONCLUSION

Digital twin (DT) technologies are rapidly transforming the conceptualization,
operation, and governance of smart cities by enabling real-time integration of
physical and digital systems. As demonstrated throughout this chapter, the
deployment of DT frameworks across diverse domains-ranging from urban
planning and energy management to disaster resilience and citizen
engagement-has enabled a shift toward data-informed, participatory, and
adaptive urban development.

The literature reviewed in this chapter underscores the importance of modular
architectures, real-time analytics, and interoperability standards in developing
scalable DT platforms (Khan et al., 2024), (Ford and Wolf, 2021), (Lee et al.,
2022). Furthermore, the convergence of DTs with immersive technologies and
the social digital twin paradigm introduces novel opportunities for
participatory governance, democratized urban planning, and enhanced public
engagement (Ravid and Gutman, 2022), (Askary et al., 2023), (Alarifi et al.,
2023).

Nonetheless, the advancement of DT systems is hindered by critical
challenges such as data governance, algorithmic transparency, cybersecurity,
and ethical concerns related to privacy and inclusion. These issues must be
addressed through interdisciplinary collaboration and regulatory innovation.
As White et al. and Ravid and Gutman argue, participatory frameworks and
human-centric models are necessary to ensure equitable access and public
trust in DT-enabled decision-making (White et al., 2022), (Ravid and Gutman,
2022).

In light of these insights, this chapter proposes several key recommendations
for researchers and policy makers. First, future DT implementations must
adopt open standards and federated architectures to facilitate interoperability
and decentralization (Khan et al., 2024), (Ahmed et al., 2022). Second,
longitudinal studies are required to evaluate the socio-technical impacts of DT
systems over time. Third, immersive DT applications must be co-designed
with diverse stakeholders to avoid digital exclusion and maximize societal
value (Lee et al., 2022), (Askary et al., 2023).

In conclusion, digital twins are not merely technological tools but socio-
technical systems with the potential to redefine urban life. Their successful
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integration into smart cities demands holistic strategies that blend technical
excellence with ethical foresight, institutional coordination, and active citizen
participation.
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ABSTRACT

Industrial rollers are widely used for various applications, such as
facilitating product flow, subjecting products to thermal treatments, and
maintaining specific moisture conditions. However, traditional industrial
rollers often consume excessive amounts of cooling fluid to achieve these
goals. In this study, a novel roller design was developed, and its design
parameters were optimized using ANSYS Fluent software based on the
Moving Reference Frame (MRF) method. The parameters investigated
include the rotational velocity of the roller (n = 0—90 rpm), Reynolds number
of the fluid (Re = 4000-10000), and spiral groove spacing (L = 15-36 mm).
Results indicated that increasing the rotational velocity from 0 to 90 rpm
enhanced heat transfer effectiveness by 12.8%. Decreasing the Reynolds
number from 10000 to 4000 resulted in a 15.1% improvement in heat
transfer effectiveness, while reducing the groove spacing from 36 mm to 15
mm improved effectiveness by 24%. Based on these findings, it is evaluated
that improved roller designs can be developed to increase heat transfer rates
and achieve more homogeneous temperature distributions in industrial
applications.

Keywords — Heat transfer, rotating roller, temperature distribution, spiral groove.

INTRODUCTION

Industrial rollers are highly durable cylindrical structures that play a
critical role in maintaining products at desired thermal conditions, ensuring
structural stability, and enhancing production efficiency in various industrial
applications. Typically manufactured from steel or similarly durable
materials, the design of these rollers varies significantly according to their
intended application area and the characteristics of the processed products.
These rollers perform critical functions across diverse industrial settings,
including metal processing, textiles, paper production, and plastic
manufacturing, and their designs are optimized according to specific
operational conditions and product requirements. By ensuring consistent
temperature distribution and reliable operation, industrial rollers enable
continuous production lines and the maintenance of product quality
standards. Moreover, their adaptable structures allow easy integration into
different production processes, contributing positively to overall
manufacturing productivity and product consistency (Berni et al., 2021:190),
(Alam, 2022:105132), (Fénot et al., 2011:1138), (Tachibana et al.,
1960:119), (Ullah et al., 2023:119), (Kilic et al., 2023:147), (Gunes et al.,
2023:1117).

There are numerous studies in literature examining the performance
characteristics of industrial rollers and rotating cylinders. For instance, Du et
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al. (2017:638) extensively studied the influence of rotational conditions on
the performance of vortex cooling systems, examining parameters such as
rotational number, rotational direction, and density ratio. Their results
indicated that increasing rotational number caused reductions in flow
velocity and pressure, while the direction of rotation had no significant
impact on vortex cooling performance. Additionally, an increase in the
density ratio enhanced heat transfer intensity. Baghel et al. (2020:120487)
performed a detailed investigation of heat transfer due to a water jet
impinging on a semi-cylindrical curved surface. In their study, the ratio of
cylindrical surface diameter to nozzle diameter (D/d) and Reynolds number
were considered primary parameters. The results showed that increasing
Reynolds number enhanced heat transfer efficiency by increasing the Nusselt
number. Zhao et al. (2020:118819) examined the effects of spray cooling on
temperature distribution over roller surfaces, considering parameters such as
heat flux, nozzle-to-surface distance, and spray pressure. Experimental
results revealed that flow velocity significantly influenced heat transfer.

In a study by Dalgi¢ et al. (2021:1348), the effects of adiabatically
rotating cylinders on fluid dynamics and heat transfer performance were
investigated in detail. Their results showed that applying varying rotational
velocities in different regions of the cylinder significantly enhanced fluid
dynamics and heat transfer compared to stationary conditions. Liu et al.
(2017:411) investigated thermal stresses on cylinder surfaces under varying
Reynolds numbers, rotational velocities, and different fluid types (ATF,
isobutyl-alcohol, water, acetone). Their findings demonstrated that ATF
exhibited superior heat transfer performance compared to other fluids, while
increases in rotational velocity and Reynolds number significantly reduced
surface temperatures. Jahedi et al. (2019:124) studied the cooling process of
a hollow cylinder using impinging jets, focusing on parameters such as water
jets, flow rate, rotational velocity, jet spacing, and angular positioning. Their
goal was to achieve higher heat flux, lower surface temperatures, and a
reduction in individual jet mass flow rates of up to 50%, noting a significant
effect at a rotational velocity of 30 rpm. Yurtseven (2021:552)
comprehensively compared heat transfer performance in roller models with
different fluid channel configurations under varying operating conditions.
Results highlighted that models with converging spiral channel designs
provided significant advantages in achieving uniform surface temperature
distributions. Hamraoui (2009:2386) numerically analyzed temperature
distribution within a single hollow cylinder used in rolling mills, examining
the detailed effects of cylinder rotation speed and heat exchange with
surroundings on temperature behavior. Luo et al. (2021:121749) numerically
investigated the hydrodynamic effects of sequential droplet impingement on
cylinder surface heat transfer, concluding that decreasing the vertical spacing
between droplets enhanced heat transfer effectiveness. Selimefendigil et al.
(2018:233) studied nanofluid impinging jet cooling between an adiabatically
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rotating cylinder and an isothermal surface, considering Reynolds numbers
(100—400), angular velocity (-0.1 to 0.1), horizontal position (0-3.75), and
particle volume fraction (0-0.04). Their results indicated that the highest
particle concentration increased the Nusselt number by 8.08%,
demonstrating improved heat transfer at higher Reynolds numbers.

In literature studies, heat transfer performance and temperature
distribution in industrial rollers and cylinders have been investigated
extensively in terms of roller geometry, surface cooling methods, fluid
velocities, impinging jets, and different types of cooling fluids, including
nanofluids. Unlike previous studies, this research presents a novel roller
design featuring a spiral channel embedded within the hollow roller wall.
Numerical investigations were conducted to analyze the effects of fluid
velocity-dependent Reynolds number, spiral groove spacing, and rotational
velocity of the roller on heat transfer performance.

MATERIALS AND METHODS
Numerical Modelling

The industrial roller design was generated using ANSYS CFD
software within the SpaceClaim module, as illustrated in Figure 1. The roller
has an outer diameter of 132 mm and a length of 394 mm. Spiral channels
with a diameter of 9.5 mm were positioned inside the roller wall at a distance
of 525 mm from the outer surface. The roller itself is composed of
aluminum.
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Figure 1: 3D model and cross-section view of the industrial roller

Pure water was chosen as the working fluid, entering the roller at an
inlet temperature of 15°C. The fluid entering the roller is evenly divided into
two equal parts at the roller’s far end, flowing in opposite directions through
the spiral grooves. Each fluid stream circulates through its respective path
within the grooves and exits the roller at the same side where the fluid
initially entered. The roller surface is subjected to a uniform heat flux of
50,000 W/m?.

Mathematical Formulation and Boundary Conditions

The governing equations for the steady-state heat transfer problem,
including the continuity, momentum, and energy equations, are presented
below. The equations are expressed in cylindrical coordinates to accurately
represent the geometry of the rotating roller and the spiral groove structure,
ensuring precise modeling of flow and heat transfer characteristics.

Continuity equation:

Ea(mr) Ea(uﬁ') a(uz) -0
r or r ag 0z

Momentum equations:

28
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Reynolds number in determining the velocity of the fluid inside the
spiral channel with a circular cross-section;

Re = upyDy /v

Heat transfer effectiveness (€) is defined as the ratio of the actual heat
transfer rate to the maximum possible heat transfer rate.
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Quce Actual heat trasanfer rate

- Qe " Maximum possible heat trasner rate

Here, Q.. represents the heat transfer rate of the fluid in the spiral
channel along the roller wall, and is calculated as follows:

Qacr = m:ﬁ'p(?} — Tour)

The maximum heat transfer represents the highest possible heat
transfer rate that can be transferred to the fluid and is equal to the value
defined as the constant heat flux.

The boundary conditions of the numerical model are defined to
accurately represent the physical conditions of the system. A constant heat
flux of 50,000 W/m? is applied to the outer surface of the rotating roller to
simulate the thermal energy input. The working fluid, pure water, enters the
spiral channels with an inlet temperature of 15°C and a specified velocity
based on the Reynolds number. At the fluid inlet, the velocity components
are set as U=0, V=0, and W=Wi,, while the temperature is defined as T=Tin.
At the fluid outlet, the velocity and temperature gradients along the axial
direction are assumed to be zero, expressed as 0U/0x=0, 0V/0x=0, OW/0x=0,
and 0T/0x=0. For the roller surface, no-slip conditions are imposed with
U=0, V=0, and W=Wyoq4, while the thermal boundary condition is
represented as 0T/0z=0. Additionally, the roller’s rotational motion is
incorporated into the model to account for its effect on fluid dynamics and
heat transfer performance. These boundary conditions ensure an accurate
numerical representation of the flow and thermal characteristics inside the
rotating industrial roller.

Grid Independence Study of the Numerical Model

Different grid models were generated to ensure the independence of
the numerical model from the mesh structure. Although variations in the
outlet temperature were observed as the cell density increased, these
differences became negligible from the latest models onward. This indicates
that the numerical model has achieved grid independence. Consequently,
transitioning to models with a higher number of elements was deemed
unnecessary as it would only prolong the computation time.
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The cells in the mesh structure of the numerical model were refined at

interface to enhance computational accuracy. The mesh

structures for two different models are presented in Figure 2. The
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relationship between the number of cells and the outlet temperature of the

working fluid is shown in Figure 3.
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Figure 3: Outlet temperature variation with different mesh number

As seen from the figure, increasing the number of mesh elements
initially results in a noticeable decrease in the fluid outlet temperature.
However, after approximately 750,000 elements, the variation in outlet
temperature becomes negligible, indicating that further refinement does not
significantly affect the numerical accuracy.

Iteration Independence Study of the Numerical Model

To ensure the independence of the numerical model from the number
of iterations, the error rates calculated in the continuity, momentum,
turbulence, and energy equations must approach the predefined limits. The
graph illustrating the convergence process of the residual values of these
equations is presented in Figure 4.
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Figure 4: Iteration test for numerical calculations

It can be observed from the residual graphs that the residual values
exhibit a rapid and significant decrease during the initial phase of the
simulation, indicating effective convergence at an early stage. After this
initial period, the residuals begin to stabilize and remain relatively constant
for the remainder of the simulation process. This behavior indicates that
most numerical corrections and adjustments occur early, after which the
solution reaches a stable state with minimal variations. The stabilized
residuals suggest that further iterations do not produce substantial changes,
confirming that the numerical solution has converged and providing
confidence in the reliability and accuracy of the simulation results.

RESULTS AND DISCUSSION

In this study, a new roller design was created using ANSYS Fluent
software, and the effects of roller rotational velocity (n = 0, 30, 60, 90 rpm),
Reynolds number based on fluid velocity (Re = 4000, 6000, 8000, 10000),
and spiral channel pitch (L = 15, 18, 27, 36 mm) on heat transfer
performance and temperature distribution were numerically investigated.

Effect of Rotational Velocity
To investigate the effect of the rotational velocity of the roller, the

velocity gradually increased at a constant Reynolds number and specific
spiral channel spacings. For Re = 4000 and a spiral channel pitch of L = 15
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mm, increasing the rotational velocity from n = 0 to 90 rpm resulted in a
12.8% increase in heat transfer effectiveness. When this effect was examined
for Re = 10000, a 12.3% increase in heat transfer effectiveness was
observed. The impact of increasing rotational velocity on heat transfer
performance is presented in Figure 5.
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Figure 5: The effect of rotational velocity on effectiveness for L = 15 mm

At the higher rotational velocity (n = 90 rpm), a noticeable
temperature gradient and local hot spots are observed, particularly near the
fluid outlet region as can be observed in Figure 6. This behavior occurs due
to increased turbulence intensity and enhanced mixing at higher rotational

velocities, disrupting the thermal boundary layer and intensifying local
convective heat transfer.

34



" 3.494e+02
3.461e+02
- 3.428e+02
- 3.395e+02
- 3.362e+02
- 3.329e+02
- 3.296e+02
3.263e+02 : ]
3.230e+02 p TP P00
3.197e+02
s ceescecosese
- 3.098e+02
- 3.065e+02
[ 3.032e+02
2.999e+02
2.966e+02
2.933e+02

"seocescseee

r

i

e

K] e 00saEe cecsceccoe0e0e

Figure 6: Temperature contours for n = 90 rpm (upper) and n = 30 rpm (Re =
4000 and L = 15 mm)

Although this turbulence-driven effect significantly enhances the
overall heat transfer rate, it can result in less homogeneous surface
temperatures, which could potentially impact material thermal stresses or
product quality in practical applications. Therefore, optimizing rotational
velocity involves balancing improved heat transfer effectiveness against
maintaining an acceptably homogeneous temperature distribution. For a
constant Re = 10000, the effect of different L values on heat transfer
performance under increasing rotational velocity is presented in Figure 7.
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Figure 7: The effect of rotational velocity on effectiveness for Re = 10000

The results indicate that the rotational velocity of the roller enhances
heat transfer effectiveness by promoting better fluid mixing and disrupting
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the thermal boundary layer, leading to improved convective heat transfer.
Higher heat transfer performance was observed at lower Reynolds numbers,
possibly because, at higher Reynolds numbers, convective heat transfer is
already dominant due to increased turbulence, reducing the relative
contribution of rotational velocity. Nevertheless, the observed improvements
across different Reynolds numbers suggest that incorporating roller rotation
is an effective approach for enhancing heat transfer performance in industrial
applications.

Effect of Fluid Re Number

For L = 15 mm, the Reynolds number was gradually varied to
examine its effect on heat transfer performance. When the Reynolds number
was reduced from 10000 to 4000 at n = O rpm, heat transfer effectiveness
increased by 14.6%. At n =90 rpm, this increase was observed to be 15.1%.
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Figure 8: The effect of rotational velocity on effectiveness for Re = 10000
These results indicate that decreasing the Reynolds number enhances
heat transfer effectiveness (Figure 8). At lower Reynolds numbers, the flow

remains more stable with reduced turbulence intensity, allowing for a more
effective interaction between the fluid and the heated surface.
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Additionally, at lower velocities, the residence time of the fluid in
contact with the roller surface increases, improving thermal energy transfer.
The slight increase in effectiveness at n = 90 rpm suggests that the combined
effect of rotational velocity and reduced Reynolds number further enhances
convective heat transfer. This trend highlights the significance of flow
characteristics in optimizing heat transfer performance within the system.
Temperature contours for Re = 4000 and Re = 10000 are presented in Figure
0.

Effect of Groove Spacing

To investigate the effect of groove spacing on heat transfer
performance, the spacing (L) was gradually reduced at a constant Reynolds
number (Re = 4000) and different rotational velocities. For n = 0 rpm,
decreasing the groove spacing from L = 36 mm to L = 15 mm resulted in a
5.0% increase in heat transfer effectiveness. At n = 30 rpm, the same
reduction in L led to an 12.8% increase in effectiveness. When this effect
was examined for n = 60 rpm, the increase in effectiveness was 18.2%, while
at n = 90 rpm, the improvement reached 24.0%. The impact of decreasing
groove spacing on heat transfer performance is presented in Figure 10.
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Figure 10: Effect of increasing groove spacing on heat transfer performance

The results indicate that reducing the groove spacing enhances heat
transfer effectiveness by increasing the interaction between the working fluid
and the heated roller surface. As L decreases, the fluid flow remains in
longer contact with the heat source, allowing for more efficient convective
heat transfer. Temperature contours for L = 15 mm and L = 36 mm are
presented in Figure 11.
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The effect becomes more pronounced at higher rotational velocities,
where the combination of rotational motion and reduced groove spacing
further disrupts the thermal boundary layer and improves mixing. At higher
rotational velocities, this interaction strengthens, leading to a more
significant improvement in heat transfer performance. However, the
effectiveness gain diminishes as L approaches its smallest value, suggesting
a potential limit to further enhancements. Nevertheless, the findings confirm
that optimizing groove spacing, particularly in combination with rotational
velocity, can significantly enhance heat transfer performance in industrial
applications. When groove spacing is increased, particularly from L = 30
mm onward, the rotational velocity of the roller negatively affects the fluid
velocity inside the channels, causing reverse flow phenomena. This leads to
a reduction in heat transfer effectiveness. The occurrence of reverse flow at
larger groove spacings suggests that careful optimization is necessary to
balance the roller's rotational velocity with groove spacing, ensuring stable
fluid flow and optimal thermal performance.
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Figure 12: Temperature contours L = 15 mm (upper) and L =36 mm (Re = 10000
and n =90 rpm)

When examining the temperature contours, it can be observed that for
the case of L = 36 mm, where the groove spacing is larger, the surface
temperature distribution is more homogeneous. However, due to the smaller
difference between fluid inlet and outlet temperatures, the heat transfer rate
decreases. This effect is presented in Figure 12 for Re = 10000, showing that
a more homogeneous surface temperature distribution is obtained as a result
of the reduction in the thermal boundary layer thickness.
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CONCLUSION

In this study, the effects of different parameters on the heat transfer
performance and temperature distribution in a rotating industrial roller with a
novel spiral groove design were investigated numerically. The investigated
parameters are the rotational velocity of the roller ranging from 0 to 90 rpm,
Reynolds number ranging from 4000 to 10000, and spiral groove spacing
ranging from 15 mm to 36 mm. In conclusion;

L.

Increasing the rotational velocity of the roller from 0 to 90 rpm
significantly enhanced the heat transfer effectiveness, with
improvements of 12.8% at Re = 4000 and 12.3% at Re = 10000,
indicating the beneficial role of roller rotation in heat transfer
enhancement.

Reducing the Reynolds number from 10000 to 4000 resulted in an
increase in heat transfer effectiveness of 14.6% at n = 0 rpm and
15.1% at n = 90 rpm for a spiral channel pitch of L = 15 mm.
These findings suggest that lower Reynolds numbers contribute
positively to heat transfer performance due to increased fluid
stability and longer residence times, enabling better thermal
interaction between the fluid and roller surface.

Reducing the groove spacing (L) from 36 mm to 15 mm at a
constant Reynolds number (Re = 4000) resulted in enhanced heat
transfer effectiveness, with observed improvements of 5.0% at n =
0 rpm, 12.8% at n = 30 rpm, 18.2% at n = 60 rpm, and 24.0% at n
= 90 rpm. These findings clearly demonstrate that smaller groove
spacings significantly improve heat transfer performance by
prolonging fluid interaction with the heated roller surface, thereby
enhancing convective heat transfer.

It was determined that the results of this study could provide
significant benefits in industrial applications. Due to decreased
fluid consumption resulting from enhanced heat transfer
performance, more economical and environmentally friendly
systems can be developed. Additionally, energy-efficient systems
can be achieved through reduced energy consumption.
Furthermore, optimizing heat transfer performance through the
identified parameters could improve product quality while
reducing operational costs.

For future studies, the use of nanofluids and hybrid nanofluids in
rotating industrial rollers could significantly improve heat transfer
performance due to their enhanced thermal properties.
Additionally, further investigations on different spiral groove
geometries and configurations might provide better control over
fluid flow, potentially improving temperature uniformity and
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overall thermal efficiency. Exploring these areas would not only
enhance system performance but also offer broader opportunities
for optimizing industrial processes in terms of energy savings,
economic benefits, and environmental sustainability.

ABBREVIATIONS
CFD Plate heat exchangers
NTU Number of transfer unit
Re Reynolds number
CAE Computer aided engineering
HVAC Heating, ventilation, and air conditioning
EG Ethylene glycol
DI Deionized water
MWCNT Multi-walled carbon nanotubes
ATF Automatic transmission fluid
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ABSTRACT

This study examines the use of tree-based machine learning models,
including Random Forest, AdaBoost, and XGBoost, for the analysis and
optimization of heat exchanger design parameters. Each model is evaluated
according to its predictive accuracy and compatibility with different data
conditions to determine its effectiveness for specific design criteria. The
results indicate that XGBoost performs well in predicting parameters such as
heat transfer rate, safety, and reliability when large datasets are available.
AdaBoost is more suitable for cases involving limited data, particularly for
predicting exchanger type and ease of maintenance. Random Forest provides
consistent results in estimating cost and pumping power. Additionally, the
study categorizes design parameters based on data volume and accuracy
requirements, offering guidance for appropriate model selection. The
integration of these models supports improved energy efficiency, early fault
detection, and reduced operational costs. Their use in the early stages of
design can contribute to the development of more reliable, efficient, and
sustainable heat exchanger systems, with future potential to incorporate
advanced materials and innovative cooling fluids.

Keywords — Heat exchangers, machine learning, tree models, design criteria.

INTRODUCTION

Heat exchangers are essential engineering systems designed to
facilitate the transfer of thermal energy between two fluid streams. They are
extensively employed across a wide range of industries, including aerospace,
petrochemical, and automotive sectors (Ghajar and Cengel, 2021:874). The
selection and design of heat exchangers for these applications are primarily
influenced by critical parameters such as heat transfer coefficient, material
properties, physical dimensions, and overall weight (Jradi et al., 2022:1514).

Recent advancements in unmanned aerial vehicle (UAV) research
have increasingly focused on developing solutions that achieve both weight
reduction and improved cooling efficiency in heat exchangers. Particularly
in high-altitude applications, the emergence of technologies such as electric
motor cooling systems, lightweight thermal batteries, and the use of phase
change materials has substantially influenced the design requirements of heat
exchangers (Kilic et al., 2024:10973), (Wang et al., 2023:233726), (Koca et
al., 2023:1366). During the heat exchanger design process for an unmanned
aerial vehicle, several factors come into play, including geometric
constraints, battery thermal management, limited available space, weight
restrictions, and the need for efficient heat dissipation under varying flight
conditions. These considerations collectively shape the thermal system
architecture and directly impact the overall performance and reliability of the
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UAYV (Alexiou et al., 2021:12038), (Son et al., 2023:120186). Traditional
data-driven approaches such as linear and polynomial regression are
generally suited for limited datasets and a small number of input parameters.
In contrast, machine learning models offer enhanced -capabilities for
performance analysis of heat exchangers by effectively supporting tasks such
as regression, classification, and correlation analysis.

Supervised learning methods are utilized for various purposes in
different types of heat exchangers, depending on factors such as
computational efficiency, physical adaptability, and performance evaluation
criteria (Sammil and Sridharan, 2024:102337). Techniques such as Support
Vector Classification (SVC), Gaussian Process Regression, Extreme
Gradient Boosting (XGBoost), Radial Basis Function Networks (RBFN),
Light Gradient Boosting Machine (LightGBM), and Artificial Neural
Networks (ANN) represent submodels from different categories within the
domain of supervised learning (Luo and Li., 2023:2).

ANN have demonstrated accurate and practical results in a range of
applications related to unmanned aerial vehicles (Abbaspour et al.,
2020:3401). These include the prediction and identification of nonlinear
system behavior in control design, performance estimation of propulsion
systems, and the evaluation of key performance parameters (Thanikodi et al.,
2020:2), (Isik et al., 2020:1177). Additionally, ANN models have proven
effective in assessing the thermal durability and reliability of heat exchanger
systems used in UAV platforms (Khan et al., 2022:119135). SVC is
frequently employed in UAV systems for modeling and simulating the
performance of heat exchangers. Moreover, when integrated with hybrid
modeling approaches, SVC facilitates precise enhancements in the prediction
and optimization of thermo-hydraulic performance parameters, particularly
in numerical analyses involving delta winglet configurations (Muthukrishnan
et al., 2020:499), (Ekrani et al., 2023:108141). Gaussian Process Regression
(GPR) has proven effective in the performance optimization of various types
of heat exchangers, including those equipped with helical wire turbulators. It
also enables precise prediction of thermodynamic properties and vapor-
liquid equilibrium behavior in propulsion and power generation systems,
contributing to improved system design and operational reliability (Celik et
al., 2023:108439), (Zhou et al., 2023:124888). Extreme Gradient Boosting
(XGBoost) can be effectively utilized for modeling and simulating complex
processes such as surface roughness. Owing to its high accuracy and
computational efficiency, it is particularly well-suited for predicting key
thermal parameters, including the heat transfer coefficient (Shaeri et al.,).
XGBoost is capable of capturing complex relationships within datasets,
making it a powerful tool for evaluating the effects of various nanofluids on
heat transfer. Its ability to handle nonlinear interactions allows for accurate
predictions in thermofluid analysis involving advanced working fluids
(Godasiaei and Chamkha, 2024:1). The Radial Basis Function Network
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(RBFN) model demonstrates strong predictive performance in accurately
estimating fouling resistance in heat exchanger data. Its capability to handle
nonlinear patterns makes it a reliable tool for analyzing thermal degradation
phenomena in heat transfer systems (lkram et al., 2024:253). The Light
Gradient Boosting Machine (LightGBM) model offers an effective strategy
for predicting heating and cooling loads in buildings, particularly during the
early design stages. Its predictive capabilities enable the implementation of
improved energy efficiency measures, contributing to more sustainable
thermal management solutions (Panda et al., 2023:322036).

A comprehensive review of the existing literature indicates that
machine learning applications in heat exchanger studies generally fall into
two main categories: those addressing fluid-related parameters (such as hot
and cold fluid properties) and those focusing on flow characteristics and
geometric configurations. However, a gap remains in the literature regarding
the application of machine learning techniques specifically tailored to heat
exchanger design criteria. Addressing this gap, the present study explores the
use of machine learning methods across various types of heat exchangers,
with a particular emphasis on evaluating and comparing these methods in
terms of their relevance to design parameters. The study is structured into
three principal sections. The first section introduces a foundational overview
and classification of machine learning techniques, highlighting their roles in
heat exchanger applications. The second section delves into the critical
factors that influence model selection, supported by tabulated data
identifying variables that impact model performance across different
exchanger types. The final section offers recommendations for improving
the integration of machine learning into heat exchanger design, informed by
both current literature and prospects for future research.

MATERIALS AND METHODS
Machine Learning Models
Machine learning techniques are typically divided into five major
categories: supervised learning, unsupervised learning, reinforcement
learning, deep learning, and hybrid learning. Among these, models such as

AdaBoost, Random Forest (RF), and Extreme Gradient Boosting (XGBoost)
fall under the class of tree-based algorithms, as illustrated in Figure 1.
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Figure 1: Hierarchical block list of machine learning models

As presented in Table 1, XGBoost, AdaBoost, and Random Forest
share certain structural similarities while also differing in their algorithmic
frameworks and application purposes. Random Forest operates by
aggregating the outcomes of multiple decision trees, each constructed from a
randomly drawn subset of the training data using the bootstrap method. This
ensemble strategy enhances the robustness and accuracy of the predictions.
AdaBoost, on the other hand, is an ensemble learning technique that
iteratively adjusts the weights of misclassified samples, learning from
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previous errors to build a more accurate model. It combines multiple weak
learners by assigning greater importance to those with higher predictive
accuracy, ultimately forming a strong composite classifier. This
methodology not only improves prediction performance but also contributes
to enhanced computational efficiency (Freund and Schapire, 1996:148),
(Giorgio et al., 2023:620). XGBoost, in contrast, constructs its predictive
framework using decision trees that iteratively partition the dataset into
smaller, more homogeneous segments. The model's performance is
evaluated using an objective function, which commonly involves the mean
squared error for regression tasks and the logarithmic loss function for
classification problems. This structure enables XGBoost to effectively
handle complex nonlinear relationships while maintaining high
computational efficiency (Chen and Guestrin, 2016:785).

Overall, while machine learning models offer significant advantages
in terms of reduced computational burden and improved time efficiency,
their true potential lies in their ability to be tailored and applied more
effectively to specific problem domains.

Table 1: Compression of tree learning methods.

Machine Output Type Algorithm Type | Purpose of Use

Learning

Approaches

Random Forest | Classification/ | Bagging Medium or big sized
Regression datasets

AdaBoost Classification/ | Boosting Small or medium sized
Regression/ datasets, more focus on

misclassified samples

XGBoost Classification/ | Gradient Boosting | Big data sets, Complex
Regression/Ran problems, Prevent
king overfitting

RESULTS AND DISCUSSION

This section provides a review of existing research concerning the use
of machine learning models in determining design criteria for heat
exchangers. Various tree-based algorithms are assessed across datasets of
differing sizes and evaluated using performance metrics such as Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of
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determination (R?). Among the influencing factors, dataset size is identified
as the most significant determinant in the selection of suitable tree-based
models. The literature reveals that such models are extensively applied in
domains including energy consumption forecasting, fault detection,
estimation of thermophysical properties, and design optimization.
Additionally, it has been observed that tree-based models can be combined
with other machine learning techniques to develop hybrid frameworks that
offer enhanced predictive accuracy.

Heat Transfer Rate

The heat transfer rate is one of the primary criteria influencing the
selection of heat exchangers. Machine learning techniques such as General
Regression Neural Networks (GRNN), Random Forest (RF), Extreme
Gradient Boosting (XGBoost), and AdaBoost have shown strong capabilities
in accurately predicting heat transfer coefficients on internal surfaces,
including plates and tubes. These data-driven methods not only enhance
predictive accuracy but also offer robust generalization, resulting in
significant reductions in design optimization costs and considerable time
savings during the selection process. Comparative analyses indicate that
AdaBoost performs well in generating convergent predictions even with
relatively small datasets; however, it tends to yield higher mean absolute
error (MAE) values relative to other algorithms. In contrast, XGBoost
consistently delivers higher accuracy in larger datasets, exhibiting superior
overall predictive performance across a range of evaluation metrics.

Size and Weight

The compact and lightweight nature of heat exchangers significantly
increase their suitability for use in sectors such as aerospace and automotive,
where space and mass limitations are critical. The materials used for both the
structure and working fluid, as well as complex geometries that affect the
surface area-to-volume ratio, directly influence these design constraints. In
this context, the XGBoost algorithm integrated with autoencoders has shown
strong predictive accuracy based on RMSE, MAE, and R? metrics.
Additionally, when combined with hybrid modeling approaches, it enables
precise estimation of key design parameters such as the number of transfer
units, which are essential for optimizing the dimensions and weight of heat
exchangers.

Cost

Budget limitations represent a fundamental consideration in the
selection of heat exchangers. Key factors such as the type of working fluid,
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material selection, design specifications, and application domains have a
direct influence on overall costs. The Random Forest algorithm contributes
to cost efficiency by accurately predicting fouling accumulation, pressure,
and temperature in medium-to-large datasets, thereby supporting
performance optimization. Similarly, the AdaBoost algorithm enhances fault
detection capabilities in heat exchangers using small-to-medium datasets,
and the resulting improvements in operational efficiency have a direct
impact on reducing system-related expenditures.

Pumping Power

Temperature, flow rate, and system pressure are among the most
influential parameters determining pump power requirements. The Random
Forest algorithm has shown strong predictive performance in estimating
essential heat pump characteristics, including heating capacity, efficiency,
thermal behavior, and power consumption. By effectively capturing the
complex interactions among operational variables, this method offers a
reliable alternative to traditional modeling approaches, combining high
accuracy with improved computational efficiency.

Type of Heat Exchanger

Shell-and-tube, compact, double-pipe, plate-and-frame, and
regenerative heat exchangers are among the most commonly utilized types in
industry, with their selection guided by factors such as fluid thermophysical
properties, operating pressure and temperature ranges, and overall system
design constraints. The AdaBoost algorithm has proven effective in
predicting key thermophysical parameters and the Number of Transfer Units
(NTU), which is closely associated with exchanger size and weight, based on
data derived from computational fluid dynamics simulations. Its strong
predictive capability, particularly in scenarios with limited datasets, offers a
valuable advantage for optimizing thermal systems and improving energy
efficiency.

Safety and Reliability

Key parameters influencing the safety and reliability of heat
exchangers include the toxicity level of the working fluid, sealing integrity,
vibration and noise levels, as well as the inlet and outlet fluid temperatures
and pressures. The XGBoost algorithm, known for its high accuracy when
applied to large datasets, has proven to be an effective tool for fault detection
and diagnostic applications. In addition, it provides notable advantages in
sustaining the desired thermal comfort conditions within the system.
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Ease of Servicing

Heat exchanger design should accommodate in-situ cleaning
processes, and the selection of materials should prioritize corrosion-resistant
options such as stainless steel or titanium to ensure long-term structural
integrity. Moreover, routine maintenance is essential for sustaining
operational efficiency and extending system lifespan. The AdaBoost
algorithm contributes to overall system optimization by iteratively learning
from past prediction errors, thereby improving accuracy on new data. It also
facilitates early fault detection through the analysis of corrosion data and
provides reliable forecasts of fouling development.

Materials

In material selection for heat exchangers, corrosion resistance, thermal
conductivity, and mechanical strength are key criteria that significantly
influence performance and durability. As a result, materials such as copper,
aluminum, stainless steel, and titanium are commonly utilized. The XGBoost
algorithm has proven to be an effective approach for predicting the
thermophysical properties of fluids subjected to surface roughness,
particularly in estimating parameters like the heat transfer coefficient. Its
ability to deliver high accuracy and computational efficiency, even with
limited datasets, makes it a valuable tool in material and thermal
performance assessments.

Prospects for Tree Models in Heat Exchangers

In general, the utilization of machine learning models in heat
exchanger applications for future perspective can be categorized into several
key areas:

Optimization of performance and thermo-hydraulic modeling,
Development of Al-assisted intelligent heat exchangers,
Enhancement of energy efficiency and sustainability,
Estimation of overall heat transfer coefficients,

Detection and prevention of fouling,

Prediction of the thermal properties of fluids,

Fault detection and reliability assessment under variable operating
conditions,

Real-time monitoring and predictive maintenance scheduling,
e Selection of optimal materials and working fluids based on
performance criteria,
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e Support for geometry design and configuration selection through
data-driven approaches.

Tree-based models such as Random Forest, AdaBoost, and XGBoost
are increasingly utilized for the analysis and optimization of heat exchanger
systems. These algorithms offer considerable potential in predicting not only
energy transfer between fluids but also fluid—structure interactions and the
thermophysical properties of working fluids. Additionally, they contribute to
improved performance efficiency and allow for more accurate modeling of
operational conditions. Future advancements are anticipated to involve the
integration of these models with complementary techniques to enhance
predictive accuracy in solving complex thermal engineering problems.

By leveraging large datasets, optimal correlations between thermal
and hydraulic properties can be identified, supporting the design of more
efficient heat exchanger configurations. Decision tree-based models enable
the analysis of historical performance data to generate predictive insights
that support system adaptation under varying environmental and operational
conditions. This predictive capability contributes to the long-term
enhancement of system efficiency and facilitates more effective energy
consumption optimization.

To support fouling detection and prevention, the influence of particle
size on heat transfer characteristics can be systematically analyzed using
data-driven approaches. This analysis enables the development of more
robust fault detection and diagnostic methodologies. As a result, system
performance can be optimized, and maintenance operations can be executed
more effectively and efficiently, reducing downtime and extending
equipment lifespan.

CONCLUSION

In this study, heat exchanger design parameters were analyzed using a
range of machine learning techniques, and the most appropriate method was
identified for each parameter based on predictive accuracy and
computational efficiency. In conclusion, tree-based models such as Random
Forest, XGBoost, and AdaBoost have demonstrated strong potential in
addressing complex heat exchanger design challenges. Their ability to
handle nonlinear relationships, process large datasets, and adapt to varying
operational conditions makes them valuable tools for improving
performance, enhancing energy efficiency, and supporting intelligent system
design. The findings suggest that integrating these models into early design
stages and operational strategies can lead to more reliable, cost-effective,
and high-performance thermal systems.

1. Considering the varying data density and accuracy requirements
associated with tree-based models, it can be concluded that

53



different heat exchanger design criteria are best addressed under
specific application conditions. Design aspects such as heat
transfer rate, safety, and reliability are most effectively analyzed
in scenarios involving large datasets and high accuracy demands.
Pumping power can be reliably assessed in applications with
extensive datasets but lower precision requirements. In contrast,
cost estimation, heat exchanger type, and material selection are
better suited for cases with limited datasets that require high
prediction accuracy. Finally, parameters such as ease of
maintenance and servicing can be evaluated adequately under
conditions involving both low data volume and minimal accuracy
requirements.

The application of tree-based machine learning methods in heat
exchanger systems provides substantial advantages in enhancing
energy efficiency, enabling early fault detection, streamlining
maintenance operations, and minimizing operational costs. By
optimizing system performance, these methods contribute to long-
term improvements in both sustainability and overall operational
effectiveness.

Looking ahead, the integration of tree-based machine learning
models into industrial applications is expected to play a critical
role in optimizing heat exchanger design parameters, leading to
the development of more efficient thermal systems. These
advancements may also accelerate the adoption of novel materials
and cooling fluids, such as metamaterials and nanofluids, while
supporting the design and manufacturing of heat exchangers that
are cost-effective, reliable, easy to maintain, and environmentally
sustainable.

ABBREVIATONS
ANN  Artificial neural network
CFD  Computational fluid dynamics
CNN  Convolutional neural networks
DC District cooling
DT Decision tree
KNN  K-nearest neighbor
MLP  Multilayer perceptron
Greek letters
€ Heat transfer effectiveness
p Fluid density (kgm™)
u Dynamic viscosity (kgm's™!)
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ABSTRACT

Accurate electricity load forecasting at the feeder level is crucial for ensuring
operational reliability and informed investment decisions in modern power
distribution systems. This study proposes a machine learning-based load
forecasting model for the Bolcek feeder, situated within the Bergama
Transformer Center in western Turkey. The model was developed using hourly
multivariate data collected between 2022 and 2024, including electrical
parameters such as current, voltage, and active/reactive power. Data
preprocessing steps included time indexing, normalization via Min-Max scaling,
and the application of a sliding window technique to extract sequential
dependencies. A Long Short-Term Memory (LSTM) neural network was trained
using these sequences, with training conducted over 100 epochs using the Adam
optimizer. The model demonstrated successful convergence during training,
achieving a final MSE of approximately 0.0022. However, performance on the
2024 test set revealed generalization limitations, with a negative R? value
indicating overfitting. Despite this, the model was able to replicate seasonal load
patterns to a certain degree. The results emphasize that while LSTM models are
capable of capturing temporal trends, their forecasting reliability depends heavily
on input diversity and model regularization. This research contributes to the
ongoing exploration of deep learning for localized energy forecasting and offers
insights for smarter grid management and feeder-level planning.

Keywords — Electricity, Bélcek, machine learning, forecasting, feeder-level planning

I. INTRODUCTION

The increasing complexity of modern power distribution systems has made
accurate and localized load forecasting an essential component of operational
planning and network optimization. Factors such as growing energy demand, the
integration of renewable energy sources, changing consumption patterns, and the
electrification of transportation have led to more dynamic and unpredictable grid
behaviors. In this context, the ability to predict short- and medium-term electricity
load at the regional or feeder level has become vital for ensuring the stability,
efficiency, and resilience of electricity networks. As distribution system operators
seek to improve infrastructure management and resource allocation, the use of
intelligent forecasting techniques has gained momentum. Traditional statistical
methods are gradually being replaced or complemented by machine learning models
that can handle high-dimensional, nonlinear, and time-dependent data. Among these,
deep learning architectures such as Long Short-Term Memory (LSTM) networks
have shown promise in capturing temporal dependencies and learning complex
patterns from historical operational data. This study proposes a data-driven
forecasting framework tailored to a specific regional feeder in Tiirkiye. Using
multivariate time-series data that include current, voltage, and various types of power
measurements, the model aims to generate hourly electricity load forecasts for future
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years. The results of this approach are intended to support decision-making processes
related to capacity planning, preventive maintenance, and investment prioritization
within regional distribution grids.

Accurate load estimation is foundational to the success of rural and regional
electrification planning, particularly in settings with limited consumption data.
Namaganda-Kiyimba et al. [1] addressed this challenge by proposing an improved
load estimation methodology tailored for rural electrification systems. Their
approach integrates socio-economic survey data and stochastic user behavior models
to enhance the accuracy of demand projections, which is crucial for right-sizing
distributed energy systems. This framework offers a robust alternative to
conventional load profiling methods that often suffer from generalization issues in
low-infrastructure settings.Complementing this, Azeem et al. [2] presented a
comprehensive review of load forecasting models across various electricity
generation modalities. They systematically evaluated statistical, artificial
intelligence (Al), and hybrid forecasting techniques based on their performance
across different time horizons and power system types (e.g., conventional,
renewable, and hybrid grids). The study highlights how machine learning models—
particularly deep neural networks and ensemble methods—outperform traditional
models in complex, data-rich environments, whereas simpler statistical models
retain value in short-term or low-resolution contexts. These insights form the
theoretical foundation for adopting Al-based models in localized forecasting
scenarios like the Bolcek feeder. The performance of artificial neural networks
(ANNs) in short-term electricity load forecasting is better understood through
experimental analyses conducted on categorized data. Evren and Ozkan (2021)
categorized daily electricity load data into three categories—summer, winter, and
transitional seasons—and compared different ANN structures in a comparative
manner. The effects on accuracy were evaluated by changing the number of inputs,
the number of hidden layers, and the epoch parameters in the model architectures. It
was observed that prediction errors increased in summer and that ANNs performed
more consistently in transitional seasons. These findings reveal that seasonal effects
and data categorization play a decisive role in model success. The study emphasizes
the contribution of seasonal analyses to enhancing the generalizability and accuracy
of electricity load prediction models at the regional level [3]. Another significant
contribution to the field comes from Chodakowska, Nazarko, and Nazarko [4], who
examined the robustness of Autoregressive Integrated Moving Average (ARIMA)
models in the context of noise-affected electric load forecasting. Their study
rigorously assessed how stochastic disturbances influence forecasting precision
across different time horizons. The analysis revealed that although ARIMA models
generally deliver stable and interpretable outputs, their sensitivity to noisy input data
may limit performance, especially in high-resolution or volatile demand scenarios.
Importantly, the authors highlighted the importance of preprocessing techniques to
reduce noise impact and enhance model robustness. These insights are valuable for
applications in regional distribution networks, where data integrity can vary, and
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reinforce the necessity of preprocessing in this study's methodology. Recent
advancements in hybrid modeling have emphasized the integration of deep learning
architectures with classical time-series frameworks for enhanced accuracy in load
forecasting. Shohan et al. [5] developed a hybrid LSTM-Neural Prophet model
tailored to capture both trend and seasonality components in electric load data. Their
work demonstrated that by leveraging the strengths of both long short-term memory
networks (which are adept at capturing temporal dependencies) and the Neural
Prophet model (which efficiently handles additive components and changepoints),
significant improvements in forecast precision can be achieved. This hybrid
approach was validated using real-world consumption datasets, showing that it
consistently outperformed baseline models, especially under fluctuating demand
conditions. The study underlined the adaptability of hybrid models in dynamically
changing environments and suggested their applicability in localized and high-
resolution load forecasting tasks, similar to the objectives of the current research. s
power systems move toward greater electrification, particularly with the integration
of electric vehicles (EVs) and nonlinear residential loads, ensuring accurate load
forecasting must also consider their power quality implications. One recent study
introduced a probabilistic methodology to assess harmonics and voltage unbalance
resulting from increased penetration of such loads in residential low voltage
networks [6]. The analysis, grounded in Monte Carlo simulations, incorporated
uncertainties in load behavior, EV charging patterns, and stochastic spatial-temporal
allocation. The results revealed that power quality could significantly deteriorate
under high EV and nonlinear load penetration, especially when integrated with
photovoltaic generation. The methodology was validated using both the IEEE
European Low Voltage test system and a 471-bus residential network, offering
results benchmarked against EN50160 standards. These findings stress the
importance of embedding power quality considerations into regional load
forecasting frameworks, particularly when dealing with evolving residential
consumption patterns—a concern especially relevant for distribution-level systems
like the Bolcek feeder. Chen and Zhang (2021) proposed a theory-guided deep
learning framework (TgDLF) that incorporates physical load characteristics into an
ensemble LSTM network. This model leverages both historical consumption data
and theoretical load profiles to improve short-term and mid-term forecast accuracy.
In comparative evaluations against traditional LSTM models, TgDLF demonstrated
superior performance, particularly in scenarios with noisy or incomplete data. The
study emphasized the value of embedding theoretical constraints within the learning
process to prevent overfitting and to better generalize across varying operational
conditions. These findings align well with the methodological direction of this study,
which also leverages LSTM-based architectures for feeder-level load prediction
under real-world data variability [7]. Gasparin et al. (2022) proposed a
comprehensive examination of deep learning methods applied to electric load
forecasting. Their study demonstrated the ability of models such as CNNs, RNNs,
and LSTMs to capture complex temporal dependencies, non-linearities, and hidden
trends in consumption patterns. Moreover, the authors emphasized the importance
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of data quality and the benefits of transfer learning techniques in domains with
limited labeled data. The review also highlighted challenges such as overfitting,
model interpretability, and computational cost. This study supports the integration
of deep learning architectures into feeder-level forecasting frameworks, offering
valuable insights for regional energy planning strategies [8]. Another innovative
approach is presented by Dong, Ma, and Fu (2021), who propose a hybrid deep
learning model that integrates the K-Nearest Neighbors (KNN) algorithm as a pre-
filtering mechanism before feeding data into a deep neural network for load
forecasting. Their method aims to reduce the noise and variance in the training
dataset by selecting the most relevant historical data based on similarity in features
such as time, temperature, and consumption trends. This KNN-based preselection
improves the neural network’s ability to learn meaningful temporal patterns,
especially in non-linear and non-stationary time series data. Experimental results on
real-world load datasets demonstrate that the model significantly outperforms
traditional deep learning architectures in both short- and medium-term forecasting
accuracy. The study highlights the potential of blending statistical proximity-based
methods with deep learning architectures to enhance both precision and robustness
in electricity demand modeling, offering a promising direction for feeder-level
forecasting where data variability is often high [9]. Artificial neural networks (ANN)
remain a pivotal tool in short-term load forecasting, especially in capturing nonlinear
consumption patterns. Kamber et al. (2021) conducted a comprehensive
investigation into ANN-based models for predicting short-term electricity demand.
Their study utilized hourly consumption data, examining how neural network
structures could be optimized for different seasons and consumption profiles. The
results emphasized that properly tuned ANN architectures outperformed
conventional models, especially under fluctuating load conditions. Notably, the
authors highlighted the advantage of multi-layered neural topologies in handling
complex temporal relationships, a relevant consideration for feeder-level forecasting
in dynamically changing regional networks such as Bolcek. Their findings support
the integration of ANN-based techniques in localized forecasting systems aiming to
enhance prediction accuracy and grid responsiveness [10]. Kaysal, Akarslan ve
Hocaoglu (2022), Tiirkiye'nin kisa vadeli elektrik yiik tahminine yonelik farkl
makine 6grenmesi algoritmalarmin karsilastirmali analizini sunmustur. Calismada
Yapay Sinir Aglari (ANN), Ridge Regresyonu, Lasso Regresyonu ve Destek Vektor
Regresyonu (SVR) gibi ¢esitli modeller, 2019 yilina ait saatlik elektrik tiiketim
verileri lizerinde test edilmistir. Tahmin performansi, RMSE, MAE ve R2
metrikleriyle degerlendirilmis ve ANN modeli 6zellikle dogrusal olmayan tiiketim
egilimlerini 6grenme kapasitesiyle 6ne ¢gikmistir. Elde edilen sonuglar, ANN’in 0.86
RMSE, 0.62 MAE ve 0.97 R? skorlar1 ile diger modellere kiyasla {istiin performans
gosterdigini ortaya koymustur. Bu bulgular, bélgesel diizeyde kisa donem tahmin
modelleri gelistirirken yapay sinir ag1 tabanli yaklasimlarin dikkate alinmasi
gerektigini ve veri karakteristiklerine duyarli model se¢iminin tahmin dogrulugu
izerinde belirleyici bir etken oldugunu gostermektedir.
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II. MATERIALS AND METHOD

This study aims to develop a multivariate short-term and medium-term electricity
load forecasting model for the Bolcek feeder, located within the Bergama
Transformer Center of Turkey’s western distribution region. Historical load data
collected from 2022 to 2024 were utilized for model training and evaluation, while
forward-looking predictions were generated for the years 2025 through 2027. The
methodological approach integrates deep learning with multivariate regression,
specifically employing a Long Short-Term Memory (LSTM)-based neural network
due to its proven capacity in modeling sequential dependencies in temporal datasets.

A. Data Collection and Preprocessing

The raw dataset was compiled from operational measurements recorded at the
Bolcek feeder on an hourly basis. The collected data span across three years (2022—
2024), covering various seasonal and operational conditions. Prior to model training,
data were subjected to a series of preprocessing steps, including:

e Missing Value Handling: Interpolation techniques were employed to fill in
sporadic missing entries.

o Feature Engineering: Additional variables such as calendar-based
indicators (e.g., weekday/weekend, season) and lagged load values were
generated to enhance the input feature space.

¢ Normalization: All numerical features were normalized using Min-Max
scaling to ensure stable gradient descent convergence.

B. Model Architecture

The forecasting model was built using a Long Short-Term Memory (LSTM) neural
network architecture, known for its effectiveness in learning temporal patterns and
capturing long-term dependencies in time-series data. The model was designed as a
multivariate regressor, taking multiple input features and forecasting a single target
output—electric load. The architecture consisted of:

e Input Layer: Accepting multivariate sequences (e.g., load, hour, weekday,
temperature if available).

e LSTM Layer(s): One or more LSTM layers with a specified number of
hidden units, tuned via empirical experimentation.

¢ Dense Output Layer: A fully connected layer projecting the final hidden
state to the predicted load value.

The model was implemented using Python and TensorFlow/Keras libraries, and
trained on a GPU-enabled environment for computational efficiency.
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C. Training and Evaluation

The dataset was split into training (2022-2023) and test sets (2024), with the test set
simulating unseen operational conditions to assess generalizability. The loss function
used was Mean Squared Error (MSE), and model performance was monitored using:

e Root Mean Square Error (RMSE)
e Mean Absolute Error (MAE)
¢ Coefficient of Determination (R?)

Optimization was conducted using the Adam optimizer with a learning rate schedule
to avoid overfitting and enable faster convergence. Training was performed over 100
epochs with early stopping applied based on validation loss.

D. Forecasting Future Load(2025-2027)

After validating the model on 2024 data, the trained LSTM model was deployed to
forecast hourly electricity load profiles for the years 2025 to 2027. These forward
predictions are expected to support distribution planning and regional energy
management.

III. RESULTS

In this section, the performance of the proposed LSTM-based multivariate
forecasting model is presented. The model was trained using hourly electricity load
data from 2022 and 2023, validated and tested on the year 2024, and used for forward
predictions for the period of 2025 to 2027. The evaluation metrics used include Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of
Determination (R?). The training loss showed steady convergence over the epochs,
achieving a final MSE of approximately 0.0039. However, when applied to the 2024
test set, the model yielded a negative R? score, indicating poor generalization
performance. This suggests that while the model was able to capture patterns in the
training data effectively, it struggled to extrapolate to unseen data, possibly due to
seasonal shifts or distributional changes in the input space. The predicted hourly load
for selected months in 2025-2027 shows recurring seasonal trends, with noticeable
peaks during summer and winter months, consistent with historical consumption
behavior. However, due to the overfitting issue identified during testing, the absolute
reliability of these long-term forecasts should be interpreted with caution. The test
phase results—particularly the negative R? value—indicate that the model may have
overfitted the training data or failed to capture structural shifts between 2023 and
2024. Contributing factors may include:

e Incomplete or noisy input features (e.g., missing weather data).
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o Insufficient temporal diversity in the training set.
e Lack of ensemble regularization or hybridization.

These insights suggest potential improvements for future work, such as
implementing ensemble LSTM architectures, introducing weather covariates, or
applying attention mechanisms for better temporal context learning. All results
obtained are shown in Table 1. The workflow diagram is shown in Figure 1.
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Fig. 1 Workflow diagram

Table 1. Performance metrics summary

Dataset RMSE MAE R”2
Training 0.945
(2022-23) 0.0625 0.0481
Test (2024) 0.1548 0.1116 -0.157

IV.DISCUSSION

The experimental results indicate that the proposed LSTM-based multivariate
model performs well during training, achieving low error metrics and a high R?
score. However, its test performance on 2024 data reflects a clear generalization
problem, as evidenced by the negative R2 This discrepancy suggests that the model
learned temporal patterns specific to the training years (2022-2023) but failed to
effectively adapt to variations in the unseen 2024 data. Several potential causes may
underlie this issue. Firstly, load behavior in electrical distribution systems is highly
sensitive to seasonal, behavioral, and policy-related factors. The absence of external
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features such as weather data (temperature, humidity), calendar effects (holidays),
or macroeconomic indicators may have limited the model’s ability to generalize
across different temporal contexts. Secondly, the relatively small size of the training
dataset—limited to only two years of hourly data—may not have been sufficient to
cover the complex, periodic patterns necessary for reliable extrapolation.
Additionally, the model architecture did not include regularization techniques such
as dropout or ensemble methods, which could have improved generalization
performance. Despite the suboptimal performance on the 2024 test set, the forecasted
load patterns for 2025-2027 appear structurally consistent with historical trends. The
model was able to replicate annual demand cycles, suggesting that it retains some
capacity to capture long-term seasonality. Nevertheless, these forecasts should be
interpreted cautiously, and further refinements—such as the incorporation of hybrid
deep learning models or feature expansion—are recommended for future studies.

V. CONCLUSION

This study presents a data-driven regional load forecasting application for the Bélcek
feeder, leveraging a Long Short-Term Memory (LSTM) based multivariate
regression model. The model was trained on hourly load data from 2022 to 2023 and
validated on 2024 to predict electricity consumption for the 2025-2027 period.
While the training results demonstrated strong fitting performance, the model failed
to generalize effectively to the test set, as shown by a negative R? value. The findings
emphasize the critical importance of feature diversity and model robustness in
electrical load forecasting tasks. Even though LSTM networks are inherently capable
of learning long-term dependencies, their standalone use may fall short in dynamic
real-world environments unless supported by hybrid strategies or external inputs.
Future work should consider the integration of weather and socioeconomic
indicators, attention-based mechanisms, and ensemble learning strategies to improve
the model’s adaptability and accuracy. Moreover, expanding the training dataset to
include more years and capturing multiple seasonal cycles may significantly enhance
generalization. Despite current limitations, this study contributes to the growing
body of research emphasizing localized, feeder-level demand prediction using
machine learning, and serves as a practical reference for utility companies and
policymakers aiming to enhance distribution grid resilience and planning accuracy.
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ABSTRACT

During drilling operations carried out for the purpose of exploring or
exploiting oil and/or natural gas deposits, uncontrolled eruptions (technical
accidents) have also occurred, which have led to damage to the well and, in
particular, have affected the capacity of the productive layers to continue
producing under the initial conditions provided for in the exploitation projects.

This article analyzes the inflow of fluids from the formation into the
well and mathematizes the equations of flow of eruptive fluids through wells.

Keywords — Oil and gas drilling, oil and gas eruption, modeling

I. INTRODUCTION

During oil and gas drilling a serious accidents can occur because it is
posible to:
a. During the passage of the productive layer, as a result of the penetration of
fluids that saturate this layer into the drilling fluid,
b. As a result of pressure variations during the extraction maneuver of the
drilling rig,
c. As a result of pistoning or sleeve operations on the productive layer and/or
the casing string,
d. As aresult of the loss of drilling fluid during rock dislocation operations (as
aresult of its penetration into the productive layers) and its complete isolation,
e. As a result of the use of a blowout preventer, unclassified or inappropriate,
for the pressure class in the well,
f. During drilling or operations to increase the productivity of wells,
g. As a result of erosion/corrosion of the drill tubing or casing strings and
therefore the occurrence of unscheduled multiphase fluid leaks,
h. As a result of the failure of the sealing gaskets at the flanges of the strings
or the blowout heads (occurrence of fluid leaks in the form of a jet).

The fluids that could erupt are [2]:

- Natural gas associated with productive or under-exploration deposits,

- Crude oil,

- Water associated with the deposit penetrated by drilling,

- Sand and traces of rocks dislodged by drilling,

- Components of the drilling fluid (chemicals, biological products,
components to increase the capacity of the productive layer, elements
to reduce the permeability of the drilled layer, etc.),

- Dislodged elements from equipment (metallic or other) damaged as a
result of the uncontrolled flow of fluids from the erupting wells.
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The way an uncontrolled eruption occurs is primarily due to the fact
that during drilling, while crossing the layer saturated with fluids under
pressure, a pressure imbalance usually occurs (between the hydrostatic
pressure of the liquid column in the well and the pressure under which the
fluids in the layer are found).

If the hydrostatic pressure of the liquid column is lower than the
pressure in the formation, the fluids in the formation penetrate into the well
fluid, leading to a sharp decrease in the hydrostatic pressure of the liquid
column at the formation level (due to the diffusion of gas particles in the
drilling fluid).

It has been observed that the fluids that saturate the formation can
penetrate into the drilling fluid even if the hydrostatic pressure of the liquid
column in the well (at the formation level) is higher than the pressure at which
the fluids that saturate the formation are found (due to the gasification of the
drilling fluid by the adsorption of gases on the surface of colloidal clay
particles in the drilling fluid).

In the case of saturation of the productive layer only with the liquid
phase (no free or in solution gases), a decrease in the specific gravity of the
drilling fluid is observed (which can be corrected) and is due to the diffusion
of liquid particles due to the density variation between the two fluids in
contact.

The pathways of gas penetration into drilling fluids lead to
gasification of the drilling fluid and are due to:

a. Dissolution of gases in the free water in the drilling fluid,

b. Diffusion in the form of bubbles,

c. Adsorption on the surface of colloidal particles,

d. Dislocation of rocks by the drilling bit and penetration of gases
into the fluid,

e. Effusion processes.

II. MODELING OF OIL AND GAS ERUPTION

The volume of gases entering the solution is a function of pressure,
temperature, nature of the gas, type of rocks, adsorption capacity of colloidal
particles, etc.

The influence of pressure on the amount of dissolved gases (at a
constant temperature) is determined by Henry's law [3]:

Vg=ap (1)

In equation.l « is the solubility coefficient of gases in liquid
(Nm>®/m?® atm), V, represents the volume of gases dissolved in one m? of liquid
(Nm>?/m?), and p is the pressure of the analyzed system (bar).

But considering that in a well there cannot be a constant
temperature (from the bottom of the well to the surface) there is a variability
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of the solubility coefficient (at the bottom of the well the solubility of gases is
lower).

On the other hand, the volume of dissolved gases depends on the
nature of the gas, ethane and propane dissolving in a larger volume than
methane.

In construction site practice it was observed that as the drilling fluid
rises, the pressure at different levels decreases (towards the surface) leading
to the release of gases from the solution and therefore its gasification (decrease
in specific gravity).

The diffusion of gases into drilling fluids occurs in the vicinity of
hydrocarbon-saturated layers (especially when circulation is interrupted for
long periods of time).

The variation of the solubility coefficient of gases in the liquid (as
a function of temperature) is given by the relationship [1]:

AH(T2-Ty)
a = aze R T2l )

In equation 2 we have:

- ais the Bunsen constant (the coefficient that describes the volume of
gas expressed under standard conditions that dissolves in a unit
volume of solvent at a given pressure and temperature),

- His the differential heat of dissolution,

- Tis the absolute temperature, °K,

- Ris the universal gas constant.

In the case of fluids that contain gases from the productive layers
(derived by diffusion from fluids existing in the productive horizons or that
contain gases in their composition), the extraction of dislocated rocks takes
place (through the circulation of the drilling fluid), the gas bubbles (present in
the fluid) reaching the detritus treatment and separation unit.

In practice, it is desirable that in the case of fluids containing
associated gases, the drilling speed be chosen so that the volume of gases
entering the drilling fluid is lower than that which would cause a decrease in
the specific gravity of the fluid between the column (wellbore) and the drilling
casing and therefore the migration of gases to the surface.

The adsorption of free gases on the surface of colloidal clay
particles can lead to the manifestation of the productive layer (even if the
hydrostatic pressure of the liquid column in the well at the level of this layer
is higher).

Given that drilling fluids are colloidal solutions of clays and water,
the particle radius being of the order of /=310 ¢m, the specific surface area

2
1s of the order of = 105 Cms
dm

the rock particles brought to the surface by the drilling fluid is extremely high,
at the boundary of separation of the two phases (water/clay) the phenomenon
of gas adsorption takes place (i.e. the agglomeration of gas molecules on the
surface of the solid phase).

of fluid, the value of the specific surface area of
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Due to this phenomenon we can determine the pressure of the fluids

in the layer (at equilibrium) as:
ps = (o + 0) (3)

In equation 3 ¥ represents the content of gases embedded in the
drilling fluid (expressed as a decimal fraction), 4 and C being experimentally
determined coefficients.

Also in determining the pressure in the layer, it is important to
determine the drilling depth / (m) and the specific gravity of the drilling fluid.

The analyses performed on the data from the studied drillings
demonstrate that the useful values for the coefficients 4 and C are close to the
values 1.08 and 0.074.

But analyzing equation 3 we can state that below the value ¥ < 1

(i.e. below the saturation limit), the factor ﬁ+ C is greater than 1 and

therefore there is the possibility of digging a gas layer with a drilling fluid
(digger) that has a hydrostatic pressure of the fluid column lower than the
pressure in the layer.

The presence of gases in the drilling fluid makes the real pressure
at the level of the productive layer to be[1]:

h
przps_pazl_](; 4)
Or the above equation can also be written in the form:
hy
br = ﬂa 10 (5)

Where:
- ps is the fluid pressure in the formation (bar),
- Pq is the adsorption pressure (bar),
- his the height of the fluid column in the well (m),
- yis the specific gravity of the drilling fluid (gr/cm3),
- B, is acorrection coefficient due to the adsorption phenomenon.

This coefficient is a function of the gas content o in the drilling fluid
(expressed as a decimal fraction) and of two coefficients (4 and C) determined
experimentally.

a="z+C (©6)

Analyzing equation 6, it is observed that below the saturation limit

(a<1), we obtain ,>1 and therefore the pressure in the gas layer can be greater
than the hydrostatic pressure of the drilling fluid used to penetrate this layer

through the well.
1
Ba = Tos@ + 0,074 @)
When reaching the gas adsorption limit in the drilling fluid, o>1,
the gases penetrate through the drilling fluid cake (deposited on the walls of
the wellbore) in the form of fine networks of bubbles (adhering to the solid

particles in the drilling fluid).
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The radius of these bubbles varies inversely proportional to the gas-
fluid interfacial tension and the viscosity of the fluid, at high values of
viscosity the bubbles have small radii and therefore can be more easily torn
off the walls of the wellbore by the drilling fluid in the movement in which
they then penetrate it.

In order to mathematize the above mentioned, a correction factor
was introduced which is a function of the viscosity of the drilling fluid (u
expressed in s Marsch), namely:

By = 0,24 m (30)2 + 0,88 (8)
In this case the pressure in the fluid layer p, can be written as:
= (0,24 —7 ( o+ 0,88) (o + €) 9)
Which meets the condition:
(024 — (30)2 +0,88) (5 +0) <1 (10)

The influx of fluids from the layer into the well can occur even
though the apparent hydrostatic pressure of the drilling fluid column (%) at

the level of the productive layer has a higher value than the pressure of the
fluids that saturate the layer p;.

h
ps = BaBv 7o (11)
When the viscosity tends to infinity S, from equation 11 becomes
equal to 0.88.

If the product 8,5y < 1 then the inflow of fluids from the layer
into the well occurs even if the numerical value of the hydrostatic pressure

(%) of the drilling fluid at the level of the hole has a value greater than the
saturated layer pressure p;.
At low values of the viscosity of the drilling fluid, the bubbles are

large and adhere strongly to the walls of the well (a greater mechanical
energy is required to remove them).

II1. ANALYSIS OF THE CHANGE IN THE HYDROSTATIC PRESSURE OF THE
DRILLING FLUID DURING THE MANEUVER OF THE DRILLING RIG

The change in the hydrostatic pressure of the fluid column in the
well, during the operation of the drilling rig, was highlighted by W.T.
Cardwell [2].
W.T. Cardwell defined the viscosity of the drilling fluid in linear flow, starting
from the axially symmetric flow relation

F
o @ +pgh) _?a_r (12)
Where:
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- xis the distance of viscosity and velocity measurement along the
flow axis,
- pis the drilling fluid pressure,
- pis the drilling fluid density,
- gis the gravitational acceleration,
- vis the drilling fluid velocity,
- ris the well radius.
- his the well depth.
Given that the x-axis corresponds to the vertical of the well,

equation 12 can be written as:

X pg=tZ (13)

In axial drilling ﬂu1d flow, none of the variables in equation 13 vary
in the x direction, except for pressure and pressure drop, equation 13 can be
simplified to the form:

A
Tp - rar( (14)

In equation 14, Ap is the pressure drop over length I (which is
considered to be the length of a cylinder of surface S immersed in a cylinder
of radius R.

An approximation is implicitly introduced in equation 14, namely
that given the flow in depth, its effects on the well radius can be neglected,
the deviation of the pressure (P) from the hydrostatic pressure being equal
to:

P =Ap — pgl (15)

In this case equation 15 becomes:

P ua av

T=rar (o) (16)
Equation 16 allows us to define the flow rate of the liquid (drilling
fluid) inside the drill string (with radius S) and in the area between the drill
string and the wellbore with radius S.
The equation for the flow rate of the drilling fluid through the

inside of the drill string is given by the relation:
Q= -2 =+ sty (17)
And integrating the fluid ﬂow through the area between the
wellbore and the drill string, we obtain:
4 2_c¢2 2_c¢c2
Qu=-"2(R*-5?)(R2+82 - )+ EF-—252)  (18)
sul Ing 2 Ing

If the borehole with radius R is closed at the bottom, the two fluxes
must cancel each other out:

Qp +0,=0 (19)
41 1
p- Rf;u B — (20)
(= 1)ln2—(ﬁ)
4luu (21)
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Where z = % and u is fluid velocity.
The function F(z) is given by the relation F(z) :%, in

Grpinz=Gz=)

the specialized literature being determined by numerical calculation.
Analyzing the data of the wells in Romania We managed to

determine by calculation the value of the function F(z) as a function of z,

namely (figure 1):

F(z) =-0,0057z° + 0,17677° - 2,1847/ /z* + 13,6867 - 45,007z + 70,9137 -
35,963 (22)

With a margin of error (the proportion of the variation in the
dependent variable that is predictable from the independent variable) R? =
0,9794.

The pressure drop that occurs along the liquid column depends on
the extraction speed, namely it increases with the speed of lifting the casing
and also increases with the size of the annular space between the casing and
the wellbore and directly proportional to the viscosity of the drilling fluid.

In the case of loading the drill bit or heavy casing with materials
resulting from the dislocation of rocks, the space between them and the
wellbore decreases even more so that this pressure variation actually leads to
a decrease in the hydrostatic pressure of the liquid column (so at a value of
this the layer starts to produce).

During the period when the casing is stopped for unscrewing a step,
the balance is restored, but the pressure variation will occur when extracting
the next step.

So the fluids that saturate the layer penetrate from the layer into the
wellbore in the form of plugs at approximately equal intervals of time.

As the number of plugs increases, they are transshipped to the
surface, causing small eruptions.

Finally, the hydrostatic pressure of the liquid column in the well
drops below the pressure in the productive layer, at which point the layer will
ensure the violent eruption of the drilling fluid-oil fluid mixture.

In the case of plugging the holes of the well, the pressure variation
is accentuated at all levels in the well.

When lowering the drilling rig (rod) into the well, the same
phenomenon occurs, with the caveat that the additional pressure acts
downwards this time, which leads to an increase in the hydrostatic pressure of
the liquid column exerted on the lower layers.

The increase in the hydrostatic pressure value leads to reaching the
fracturing pressure of the productive layers and therefore a decrease in the
liquid level in the well (due to its penetration into the cracks).
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Fig 1. Evolution of the function F(z) as a function of z, (F (z)=ﬁ)
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When the rig stops, the balance is restored, but the liquid level in
the well being low and therefore the hydrostatic pressure having a lower value
than the pressure of the petroleum fluids, can lead to eruptive manifestations,
due to the influx of fluids from the layer into the well.

In the present case, with a wellbore diameter of 8 % inches, and a
drilling rig diameter of 4 % inches, we have a maneuver time of 10 seconds
and with a drill string of 15,000 feet (4,572 m) we obtain a pressure drop of
1,000 psi (68 bar).

Crossing a zone with circulation losses (zone under oil, gas or
aquifer formations) causes the liquid level in the well to decrease and therefore
the hydrostatic pressure of the liquid column in the well (at the level of these
formations) will become lower than the pressure under which the fluids that
saturate the respective formations are found and therefore the fluids in the
layer will begin to erupt.

Unlike the pistoning or sleeve effect, the pressure variation effect
can occur in the rod packing without any external deposit (i.e. perfectly clean)
or without the holes of the hole being clogged.

The pistoning or sleeve effect occurs when the drill, heavy rod or
turbine are covered with material resulting from the dislocation of rocks and
when the casing is moved upwards, the hydrostatic pressure of the liquid
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column under the sleeve decreases, which causes the inflow of fluids from the
layer into the well.

When the maneuver is stopped, the pressure is restored, but the
gases and crude oil no longer enter the layer, by repeating the phenomenon
reaching a moment when the hydrostatic pressure of the liquid column at the
layer level is lower than the pressure in the layer, so a sudden eruptive
manifestation of the layer can be triggered.

Based on data collected in the specialized literature, in what follows
we have created a numerical model regarding the evolution of the pressure
drop when pulling or maneuvering the drill string for three pipe diameters (2
7/8 inch, 3 ' inch and 4 ': inch) over several time periods (90 seconds, 30
seconds, 10 seconds).

Thus we determined the pressure drop reported in psi/1000 feet
(0.0689 bar/304 m or 0.000227 bar/m).

The equations are given in Table 1 and Figures 2,3,4.

[ S = S U Y
o N B~ O

2 7/8inch 4 1/2 inch

3,1/2 inch

Pressure drop (psi/1000 feet)

o N B OO

0 2 4 6 8 10 12
Borehole diameter, inches

Fig. 2. Evolution of pressure drop (psi/1000 feet) as a function of wellbore diameter
and drill string diameter at a handling time of 90 s
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Table 1. Pressure drop reported in psi/1000 feet (0.0689 bar/304 m or 0.000227

bar/m).
Operational Wellbore Equation R?
times, s diameter
90 27/8 y =203,41¢ 0428 0,9893
90 3% y = 60,6102 0,991
90 4% y = 70,39¢0-244x 0,9284
30 27/8 y =317,39¢ 0363 0,9874
30 3% y =437,01¢037 0,978
30 4% y = 490,27¢ 0362 0,9924
10 27/8 y = 122830413 0,9697
10 3% y = 1479,8¢ 0362 0,9983
10 4% y =1150,5¢"%371x 0,9864

In the equations above, y represents the pressure drop reported in
psi/1000 feet (0.0689 bar/304 m or 0.000227 bar/m) and x is the borehole

diameter (inches).

Pressurg drop (psi/]000 feet) _
o o o o o o

=
o

2 7/8inch

4

3 1/2 inch

4 1/2 inch

6 8 10

Borehole diameter, inches

12

14

Fig. 3. Evolution of pressure drop (psi/1000 feet) as a function of wellbore diameter

and drill string diameter at a handling time of 30 s
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Fig. 2. Evolution of pressure drop (psi/1000 feet) as a function of wellbore diameter
and drill string diameter at a handling time of 91 s

IV.RESULTS

The pressure drop that occurs along the liquid column depends on
the extraction speed, namely it increases with the speed of lifting the casing
and also increases with the size of the annular space between the casing and
the wellbore and directly proportional to the viscosity of the drilling fluid.

In the case of loading the drill bit or heavy casing with materials
resulting from the dislocation of rocks, the space between them and the
wellbore decreases even more so that this pressure variation actually leads to
a decrease in the hydrostatic pressure of the liquid column (so at a value of
this the layer starts to produce).

During the period when the casing is stopped for unscrewing a step,
the balance is restored, but the pressure variation will occur when extracting
the next step.

So the fluids that saturate the layer penetrate from the layer into the
wellbore in the form of plugs at approximately equal intervals of time.

As the number of plugs increases, they are transshipped to the
surface, causing small eruptions.

Finally, the hydrostatic pressure of the liquid column in the well
drops below the pressure in the productive layer, at which point the layer will
ensure the violent eruption of the drilling fluid-oil fluid mixture.
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In the case of plugging the holes of the well, the pressure variation
is accentuated at all levels in the well.

When lowering the drilling rig (rod) into the well, the same
phenomenon occurs, with the mention that the additional pressure acts
downward this time, which leads to an increase in the hydrostatic pressure of
the liquid column exerted on the lower layers.

The increase in the hydrostatic pressure value leads to reaching the
fracturing pressure of the productive layers and therefore a decrease in the
liquid level in the well (due to its penetration into the cracks).

Crossing an area with circulation losses (area located under oil, gas
or aquifer formations) causes the liquid level in the well to decrease and
therefore the hydrostatic pressure of the liquid column in the well (at the level
of these formations) will become lower than the pressure under which the
fluids that saturate the respective formations are found and therefore the fluids
in the layer will begin to erupt.

Unlike the pistoning or sleeve effect, the pressure variation effect
can occur at the rod seal without any external deposit (i.e. perfectly clean) or
without the holes of the core being clogged.

The pistoning or sleeve effect occurs when the drill, heavy rod or
turbine are covered with material resulting from the dislocation of rocks and
when the casing is moved upwards, the hydrostatic pressure of the liquid
column under the sleeve decreases, which causes the inflow of fluids from the
layer into the well.

When the maneuver is stopped, the pressure is restored, but the
gases and crude oil no longer enter the layer, by repeating the phenomenon
reaching a moment when the hydrostatic pressure of the liquid column at the
layer level is lower than the pressure in the layer, so a sudden eruptive
manifestation of the layer can be triggered.

Based on data collected in the specialized literature, in what follows
we have created a numerical model regarding the evolution of pressure drop
when pulling or maneuvering the drill string, for three pipe diameters (2 7/8
inches, 3 2 inches and 4 % inches) over several time periods (90 seconds, 30
seconds, 10 seconds).

V. CONCLUSION

So when extracting a cylindrical tube (the drill string) into another
tube filled with liquid (the wellbore), the liquid in the immediate vicinity of
the rising tube is drawn in the same direction, while the liquid further away
from the tube tends to descend.

Since the liquid in the tube (the annular space) has an appreciable
viscosity (of the drilling fluid), a shear phenomenon occurs between the two
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streams, the rising liquid tends to reduce the hydrostatic pressure of the liquid
column.

These pressure variations occur along the drill string and decrease
along the fluid column from the bottom of the well to the surface.

Therefore, the pressure drop also depends on the extraction speed,
increasing with the speed of lifting the string.

These pressure variations occur along the entire drill string and
decrease linearly from the bottom of the well to the surface.

REFERENCES

[1]  T.Elusakin, , M. Shafiee, Reliability analysis of subsea blowout preventers with
condition-based maintenance using stochastic Petri nets, Journal of Loss
Prevention in the Process Industries, doi:
https://doi.org/10.1016/1.jIp.2019.104026, 2020,

[2] P. Hopkins, G. Goodfellow, R. Ellis, , N. Haswell, J. Jackson, Pipeline risk
assessment: new guidelines, WTIA/APIA Welded Pipeline Symposium,
Sydney, Australia, 2009.

[3] D.Sulaiman, , D.lancu, , H.Al Jubori, , The current state of research on the
dilation processes of productive reservoir rocks related to natural gas wells, 75
Years of Energy and Performance in Education and Research 2023 Renewable
Versus Fossil Fuels. Global Energy Perspectives, Ploiesti 9.11.2023, Book of
abstracts, Editura Universitatii Petrol-Gaze din Ploiesti, 2023, ISBN 978-973-
719-887-7,

82


https://doi.org/10.1016/j.jlp.2019.104026

83



Risk assessment in the operation and safety
of marine oil installations

Timur Chis"
Daniel Iancu 2

AL-Gburi Hasan Ali Mosleh?

10il and Gas Engineering Faculty, Petroleum-Gas University Ploiesti, Romania
2Ph.D. School, Petroleum-Gas University Ploiesti, Romania *(timur.chis@gmail.com)

84



ABSTRACT

After the Deepwater Horizon accident in 2010, the issue of creating adequate and
modern EU-wide legislation on safety in the offshore oil and gas sector was
raised. Thus, in June 2013, the European Parliament officially adopted Directive
30/2013/EU on the safety of offshore oil and gas operations (Offshore Safety
Directive — OSD).The main objective of the Offshore Safety Directive is to
reduce as much as possible the occurrence of major accidents and to limit their
consequences in offshore oil and gas operations. Romania transposed the
Offshore Safety Directive into Law 165, focusing on the technological, process
and (risk) management aspects of offshore activities, the failure of which would
have a possible significant impact on health and the environment, the objective
being to ensure an adequate level of safety for People, Installations, The
environment.

This article analyzes the risk of offshore structures in Romanian Black
Sea Area.

Keywords — Oil and gas platformas, risk assessment, modeling

I. INTRODUCTION

Oil — justifiably nicknamed “black gold” — has played an extremely important
role in the world economy since the early years of the 20th century, and is still a very
important player.

In recent years, there has been a shift in global industries towards other energy
sources, such as wind power or electricity generated by photovoltaic panels, to
ultimately replace oil and its derivatives, which are considered polluting.

The collapse in oil prices in 2014 negatively affected the activity of offshore
drilling platforms, which also led to a drastic decrease in the number of active
platforms worldwide.

As producers found themselves in a new environment, in which prices fell
below the marginal cost of production, Offshore petroleum fluid production
decreased in many oil-producing countries, in some cases even resuming the opening
of new oil horizons.

Recent armed conflicts and especially the gradual transition of the global
economy towards the Zero Emissions horizon, have led to the development of new
possibilities for ensuring the energy necessary for the development of societies, with
oil and natural gas consumption expected to decrease in the future.

In several states in the US, for example, the number of oil rigs, which had
grown strongly between 2009 and 2014, has rapidly reached historically low levels.

As data on the number of operational offshore platforms show, the decline in
their number was due to low oil prices and a shift towards other energy sources.

Over the course of six years, from 2008 to 2014, the number of natural gas
production platforms fell 5 times (from around 1,600 in September 2008 to 340
today).
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Regarding the current global oil reserves, which are expected to last a
maximum of 47 years if no new discoveries are made, there are estimates that place
them at about the same level as the amount extracted in the last 100 years, especially
since the technological level that has been reached does not yet allow the full
exploitation of existing reserves.

But known reserves will most likely last longer, because oil demand is
declining in the highly developed part of the world.

According to current estimates, 79.4% of the world's proven oil reserves are
located in OPEC member countries, with the largest share of OPEC oil reserves in
the Middle East, accounting for 64.5% of OPEC's total.

OPEC member countries have made significant additions to their oil reserves
in recent years, for example by adopting industry best practices, conducting intensive
exploration and improving recovery.

As a result, OPEC's proven oil reserves currently amount to 1,189.80 billion
barrels.

Romania would currently rank 44th with 600,000,000 barrels.
The offshore oil and gas industry is very important for the EU economy, with
sixteen Member States involved.

II. CURRENT STATUS OF OFFSHORE PLATFORM SAFETY LEGISLATION

It is a fact that accidents that occur in the offshore area and that involve drilling
and production installations, fixed or mobile, have happened and, unfortunately, still
happen.

For a long time, offshore oil installations have been subject to EU legislative
acts, applicable within the limits of territorial waters, i.e. 12 nautical miles from the
baselines of the shore.

However, major shortcomings have been found in terms of legislative
regulations in the event of a major accident beyond this limit, an event that could
have a huge negative impact on human and material resources but also on the
environment.

In 2013, the European Commission developed a much more comprehensive
law on oil installations, which would target prevention, intervention and financial
liability.

This directive was also implemented in Romania (due to the fact that our
country has fluid hydrocarbon deposits in the Black Sea area and has also authorized
operators to carry out exploitation, extraction and abandonment operations of these
fossil resources. Law 165, which was promulgated in 2016, transposed into
Romanian legislation Directive 2013/30, drafted by the European Parliament in
2013.

A critical analysis of the legislation on the safety of operation of Offshore
installations and environmental protection (highlighted the lack in Romanian
legislation, even in secondary legislation, of good practice guides, norms and
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standards), of references to aspects that are part of offshore oil activity, which exist
in the legislation of other countries with a tradition in the oil and gas industry.

II1. RISK ASSESSMENT AND IDENTIFICATION
Managing the integrity of offshore oil and gas platforms: a risk-based approach

Offshore oil and gas platforms are complex installations used for the exploration,
drilling, extraction, processing and transportation of hydrocarbons.

These marine structures are designed to operate in extreme conditions, with varying
temperatures and pressures, and handle potentially explosive substances.

Risks and regulations

Offshore operations present significant risks, which is why they are subject to
rigorous risk assessments by insurance companies and government authorities.
Failures can have serious consequences, including environmental pollution, human
casualties and economic losses.

The importance of integrity management

Effectively managing the integrity of assets is crucial for the operational safety and
reliability of facilities.

Offshore operators must develop integrity management strategies that ensure the
safe, economical and reliable operation of platforms.

Optimizing Maintenance Costs
In the oil industry, maintenance costs represent a significant portion of expenses.

Optimizing these costs by implementing risk-based inspection and maintenance
plans is essential to reduce operational and economic risks.

From preventive to risk-based approaches

Stringent regulatory requirements and environmental concerns have led to the
transition from time-based preventive maintenance strategies to risk-based
approaches.

Risk assessment: an optimization technique
Risk assessment allows for the efficient allocation of inspection and maintenance

resources, prioritizing activities based on the level of risk.
This approach contributes to cost control and operational safety.
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The question is: what would be the risks identified for an oil installation
located in the Black Sea and what could happen?

There are risks identified since the design period that can have an impact on
health, safety at work and the environment.

Then there are risks associated with the operating period, production of
hydrocarbons in the case of a fixed production platform.

The sections identified in this case would be:

* subsea wells with the eruption head mounted on the seabed;
* submarine pipelines and cables;

* the fixed platform itself, with or without crew on board,

* logistical operations at sea.

We have further compiled a list of possible hazards identified during the
engineering period, relevant to the operational phase of the project, with the mention
that some of them may lead to a major accident (Major Accident Hazard — PAM):

* unburned gaseous hydrocarbon released in the upper part of the installation
(PAM);

» process flame from the burner, fire caused by gas leakage (PAM);

» explosions (PAM);

» man overboard;

» fires in various compartments;

» collisions with ships (PAM);

» earthquakes (PAM);

* extreme weather (PAM);

* helicopter crash (PAM);

* hot surfaces;

« frozen surfaces;

* collapse of loads or unbalanced loads (PAM);

» collapse of the structure (PAM);

* people in contact with chemicals.

For major accident hazards/risks, a classification can be made according to
type and location:

Risks associated with uncontrolled hydrocarbons:
* production manifold;

* wellhead, including flow pipes;

« well stations;

* risers/pipes;

* drilling and well operations

risks not associated with hydrocarbons:
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* collision with ships;

* helicopter crash;

* collapse of loads or unbalanced loads;

* collapse of the structure, including due to earthquakes;

* process flame from the burner, fire caused by gas leakage.

Specifically, below is a list of hazards identified for the activity in the
offshore area of Romania, the Black Sea.

Hydrocarbons:

* crude oil in pumping;

» crude oil extracted with reduced pressure;

» associated petroleum gases (liquefied or in solution);
* hydrocarbons located (stored) in the reservoir;

* paraffin;

* gaseous hydrocarbons.

Explosives:
« substances that can cause detonation;
« traditional explosives.

Hazards associated with working under pressure:
» air under pressure;

¢ liquids under pressure;

* pressure vessels

* steam under pressure

* diving of maintenance and operating personnel.

Hazards associated with movement:
* land, naval, air transport;

« collision with other vessels;

* machinery with moving parts;

« hand tools that can cause cuts;

« transfer with personnel basket.

Hazards associated with environmental conditions:
* weather conditions;

* sea state;

» earthquake;

» corrosion of the structure of the facilities.

Other areas under which such specific risks can be identified would be:

evacuation of personnel and equipment, medical issues, security, ergonomic issues,
corrosive substances, biological hazards, toxic products, radiation, electricity, etc.
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IV.ANALYSIS AND EVALUATION OF THE RISK IN THE OPERATION OF OFFSHORE
INSTALLATIONS

If it were to happen, how serious would it be and what would be the chances
of it happening again?

This question should be the starting point for the analysis process.

I will now highlight the quantitative and qualitative risk assessment methods.

As part of the general risk management process, quantitative analysis is a
calculation process based on the data and information collected, with the aim of
assessing the cost of risk in relation to the operation as accurately as possible.

It is very important that the data collected for performing the quantitative risk
analysis are adequate and for this they must be studied over a sufficiently long period
of time so as to cover various situations.

Since in this paper I will focus much of my attention on the fixed offshore
installation, the Ana platform located in the Black Sea, let us imagine that in the last
five starts of the process pump A located on the Ana jacket, it had a malfunction
within eight hours of starting.

With this information, we can assume that the operators will understand that,
without a countermeasure implemented, the next time they use the process pump A,
there is a 100% chance that it will fail within the first eight hours of operation.

On the other hand, qualitative risk analysis is the process of evaluating the
identified risk in terms of its severity and the likelihood of its consequences.

Qualitative risk analysis is a very useful defense tool available to the
management team of an operation against risks.

It helps to eliminate potential doubts or uncertainties about the success of the
operation, highlighting even risks that could cause less serious damage to the
operation.

In other words, the more severe risks are targeted first so that the overall
analysis is more efficient, allowing for better management of time and resources.

It is very important to understand what risk is, but especially to identify risks,
to know them.

A simple definition of risk would be that it represents the possibility that
something bad will happen.

In the following I will try to approach this knowledge from a quantitative point
of view.

To achieve this goal, there are several steps to follow:

1. In the case of an offshore installation, we will inventory all tangible assets
(machinery, tools, computers, etc.) but also intangible assets (patents, certifications,
software, etc.) on board it.

2. We will then assign a value to each of them.

As an example, a spare parts warehouse to be equipped with shelves, cabinets,
etc. could cost relatively little but the parts and materials stored can be extremely
valuable.

3. The risk exposure factor (FER) is calculated.
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For this, all possible threats to each asset must be identified, which will help
us understand how exposed each asset could be.
4. In fact, the exposure factor could be expressed as a percentage of loss.

V. RESULTS

This loss is specific to each asset considering a specific identified threat.

For example, in the case of a fire in the engine room of one of the diesel
engines, a certain part of the neighboring equipment will suffer significant damage
that could affect the operation taking place on the unit to a certain extent that can be
expressed as a percentage.

This would be the exposure factor. The exposure factor is assigned to each
asset for a single identified risk.

This factor will be small for assets that can be easily replaced.

The probability of single loss (PPU), can be calculated for an asset, for a risk

associated with that asset.

It is calculated by the formula:
PPU = Asset Value (VB) x Exposure Factor (FER) (D)

and helps to better prioritize assets.

This way, the financial loss can be estimated each time a specific threat is
associated with a specific asset.

1. Annual Occurrence Rate (AOR), identifies how often that specific threat
associated with an asset can occur.

For example, how often can a storm occur with wind and waves close to the
maximums recorded in the area where the facility is located?

Would it be possible to take into account the probability of such a storm if the
facility were relocated?

If the facility is moved to another location, could there be other threats of a
greater nature there?

For example, if the average over the last 50 years of occurrence of an extreme
storm is 3/year, then the AOR is 3.

2. Calculate the annual loss probability (ALP).

PPA = Probability of One-Time Loss (PPU) x Annual Occurrence Rate (AOR)
2

The annual loss probability (PPA) can help us understand how large the annual
loss could be for a particular asset.
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PPA helps us prioritize safety and backup measures, because now we know
how much the loss will be for a particular asset and how often the associated risk
will occur during a year.

3. The last step in the quantitative risk assessment is the cost-benefit analysis
for any countermeasure being considered.

The calculation is done by first assessing how much each safety measure or
countermeasure will cost, how much will it cost for the organization to have its own
security team?

Then we subtract this cost from the PPA (annual loss probability).

If the result of this calculation is negative, then it is not financially reasonable
to implement the countermeasures.

On the other hand, a positive result will show us how much it would be
possible for the organization to save by implementing countermeasures that prevent
a specific threat from affecting a particular asset.

Cost-benefit analysis (CBA) = PPA before countermeasures — PPA after
countermeasures — Annual cost of countermeasures (ACC). (3)

As an example, let's imagine that we have a server worth 200,000 euros
(VB).

A single specific threat or mismanagement (FER) could reduce this value
by 10%, meaning that 20,000 euros (PPU) would be lost.

This is therefore the value of the loss once a year.

We can introduce certain countermeasures such as employee security
awareness or strong passwords, which could reduce the threat.

We can also calculate how much it would cost to implement such
countermeasures for that specific threat, on that server.

In other words, if we introduce the countermeasure, we could reduce the
loss to, say, 10,000 euros.

If the cost of another countermeasure is 5,000 euros, then the value of the
benefit is a positive value, that is, 5,000 euros.

PPU = VB x FER = 200000 x 10% = 20000 @)
Benefit value = (20000 — 10000) — 5000 = 5000 euros. (5

Obviously, at the level of an offshore installation, starting from such a

model imagined on a very small scale, a complex calculation algorithm can be
imagined, taking into account the complexity of such an installation.
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VI. CONCLUSION

As a conclusion to this paper, I mention that there are gaps in Romanian

legislation, but the experience of European countries and of professional and
technological risk assessors has led to the mitigation of dangers and minimized the
effects of possible incidents.
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ABSTRACT

This study presents the development and application of a nanocomposite
counter electrode composed of platinum nanoparticles (PtNP), polyaniline
(PANI), and graphitic carbon nitride (g-CN) for dye-sensitized solar cells
(DSSCs). The primary aim is to improve efficiency, stability, and cost-
effectiveness by offering a viable alternative to conventional platinum (Pt)
electrodes. DSSCs fabricated with PtNP/PANI/g-CN  electrodes
demonstrated impressive initial performance, achieving an open-circuit
voltage (Voc) of 720 mV, a short-circuit current density (Jsc) of 22 mA/cm?,
and a power conversion efficiency (PCE) of 10.05%. These values exceeded
those of standard Pt-based cells (Voc: 720 mV, JSC: 19 mA/cm?, PCE:
9.14%). A key advantage of the PtNP/PANI/g-CN electrodes lies in their
long-term durability. Over a 12-month testing period, including weekly and
monthly measurements, these DSSCs retained 80% of their initial efficiency,
with Voc, Jsc, and PCE values stabilizing at 708 mV, 17 mA/cm? and
7.98%, respectively. In contrast, Pt-based DSSCs declined significantly,
dropping to 583 mV, 12 mA/cm?, and a PCE of just 4.32%. Electrochemical
impedance spectroscopy (EIS) confirmed the improved charge transfer
characteristics of the composite electrodes, as evidenced by reduced series
resistance and smaller semicircle diameters in Nyquist plots. These findings
demonstrate that PtNP/PANI/g-CN nanocomposites offer not only superior
initial performance but also exceptional long-term stability, positioning them
as a promising, low-cost alternative for future DSSC technologies.

Keywords — DSSC; Renewable Energy Systems,; Solar cells;, PtNP/PANI/g-CN
nanocomposite; Counter electrode

I. INTRODUCTION

The rapid Rapid population growth, along with technological and
industrial advancements, has significantly increased the demand for clean
and renewable energy sources [1-3]. Recently, solar energy has emerged as a
prominent solution to overcome the current energy crisis, owing to its
natural abundance, non-polluting characteristics, and status as a clean and
renewable energy source. Due to these advantages, solar energy is
increasingly preferred over conventional fossil fuels, which are toxic and
costly, and thus has become an intense subject of research as a cost-
effective, environmentally friendly, and sustainable energy generation
method [4, 5].

In the direct conversion of solar energy into electricity, next-generation
photovoltaic devices such as dye-sensitized solar cells (DSSCs) [6]
perovskite solar cells (PSCs) [7], and organic solar cells (OSCs) [8] are
extensively studied due to their rapidly increasing power conversion
efficiencies (PCEs), low environmental impact, excellent flexibility,
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relatively simple fabrication processes, and low production costs [9, 10].
Although the PCEs and sustainability of these next-generation solar cells are
not yet sufficient for commercialization compared to conventional silicon
solar cells [11], the moderate PCE values of silicon cells, the requirement for
clean-room production conditions, the high manufacturing costs, and the
ability to generate energy only under direct, clear, and unobstructed sunlight
necessitate the development of alternative energy conversion technologies
[12].

Among new-generation solar cells, DSSCs are particularly notable for
commercialization due to their relatively low production cost and easy
fabrication compared to other types [13]. A standard DSSC structure consists
of a semiconductor layer (usually TiO-) coated with a dye as the photoanode,
a counter electrode, and a redox electrolyte typically containing a
triiodide/iodide couple [14].

As shown in Fig. 1, the sensitizing dye attached to the TiO: film in a single
layer absorbs incoming light and generates electrons that are injected into the
conduction band of the semiconductor oxide. When light with a wavelength
matching the band gap of the dye strikes the dye, it is absorbed, causing the
electrons in the dye to be excited to an electrically high-energy state. This
process results in the formation of electron-hole pairs. The excited electrons
are transferred to TiO:, initiating a redox cycle that continues as long as
illumination is maintained, resulting in a continuous electron flow within the
structure. In this way, photon energy is converted into electric current [15].

After the counter electrode performs charge separation in the cell, it is
necessary for it to catalytically complete the missing charge of the
electrolyte. Furthermore, the counter electrode must be resistant to the
corrosive electrolyte [16].

“ Photoelectrode _Counter Electnode

‘Tco ' - .

Fig. 1 The structure and operating principle of dye-sensitized solar cells
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The counter electrode plays a critical role in DSSCs by collecting electrons
and catalyzing the reduction reaction [13], thus being an indispensable
component of the device structure. An efficient counter electrode must
possess low charge transfer resistance, high electrical conductivity, excellent
electrocatalytic activity, and high reflectivity [17, 18]. These properties
enable the efficient transfer of electrons from the external circuit to the
electrolyte, catalyze the reduction of Is/I" [17, 18], and enhance solar light
utilization by reflecting unabsorbed light back to the sensitizer [19].

Traditional conductive glasses such as indium tin oxide (ITO) or fluorine-
doped tin oxide (FTO), which are catalyst-free, provide low reduction rates
when used as substrates for counter electrodes in DSSCs. Therefore, they
require coating with catalytically active materials to accelerate the reaction
[20]. In this context, platinum (Pt) films prepared on transparent conductive
substrates are widely preferred due to their excellent conductivity and high
electrocatalytic activity [21, 22]. However, Pt is a rare and expensive metal
[23, 24], making large-scale production costly and limiting
commercialization. Furthermore, Pt suffers from corrosion and dissolution
over time due to the aggressive Is/I” redox couple [25], causing significant
instability issues in DSSC counter electrodes [26, 27]. Therefore, developing
alternative counter electrode materials with low cost, excellent stability, and
comparable performance to Pt is seen as crucial [19] and researchers are
focusing on finding suitable substitutes [13].

Recently, the discovery of carbon-based materials [28], polymers [13], and
transition metal compounds [29] as Pt-like catalysts for DSSCs has sparked
increased interest in alternative materials. Inspired by this, conductive
polymers such as polyaniline (PANI) [30] and polypyrrole (PPy) [31], metal
sulfides like cobalt sulfide (CoSz) [32] and nickel sulfide (NiS2) [33], metal
oxides such as tungsten trioxide (WQs) [34] and molybdenum trioxide
(Mo0s) [35], and carbon-based materials like graphene [36, 37], carbon
nanotubes (CNTs) [38, 39], carbon nanofibers (CNFs), and graphitic carbon
nitride (g-CN) [40] have been proposed as promising candidates to replace
Pt in DSSC counter electrodes.

Among these, carbon-based materials are preferred due to their high
conductivity, stability, and catalytic activity [41]. However, their
conductivity and catalytic activity are still relatively inferior to Pt [42].
Recent reports suggest that nitrogen (N) doping into the carbon (C)
framework enhances the electrocatalytic activity, stability, and surface
hydrophilicity of carbon-based materials [43]. Among carbon-based
materials, g-CN, a naturally nitrogen-containing carbon material, is
particularly attractive due to its low cost (owing to the abundance of C and N
in nature) and high corrosion resistance compared to Pt. Moreover, g-CN is
promising due to its ease of preparation, non-toxicity, stability [44, 45], and
outstanding thermal and chemical properties [19]. Furthermore, g-CN
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exhibits broad potential in providing multiple electroactive sites to promote
Is7/T" reduction [46, 47].

Graphitic carbon nitride (g-CN) is a two-dimensional (2D), n-type, metal-
free polymeric semiconductor, where carbon and nitrogen atoms are
connected by m-conjugated bonds. The precursors for synthesizing g-CN are
typically nitrogen-rich and oxygen-free materials containing C—N bonds. Its
unique properties, such as high stability in thermal and chemical
environments and low-cost large-scale production, make g-CN a favorable
candidate for preparing nanocomposites [13, 48, 49].

Additionally, g-CN possesses a moderate bandgap of ~2.7 eV, enabling the
absorption of not only ultraviolet (UV) light but also part of the visible
spectrum, particularly the blue region, thus increasing the photogeneration
rate of charge carriers [50]. Therefore, utilizing g-CN as an alternative or
additive to conventional solar cell materials could significantly enhance the
cost-effectiveness, eco-friendliness, stability, and performance of next-
generation devices [19].

Despite these advantages, the application of g-CN in next-generation solar
cells remains at an early developmental stage, with unsatisfactory results
reported thus far. This is attributed to factors such as low crystallinity, high
defect density, small specific surface area, insufficient active sites, high
charge carrier recombination rates, low electrical conductivity, and
inadequate optical absorption in the visible region [51-52]. The low
electrical conductivity of g-CN restricts electron transfer from the counter
electrode to the electrolyte, resulting in high interfacial resistance and low
catalytic activity [19].

However, overcoming these issues is possible through strategies such as
morphology engineering to create two-, one-, or zero-dimensional (2D, 1D,
0D) nanostructures from bulk g-CN, producing nanocomposites with
appropriate optoelectronic properties, and elemental doping [53-54]. For
instance, g-CN is often combined with highly conductive materials to
enhance its electrochemical performance [19].

Conductive polymers like PANI [43], carbon black (CCB) [47], multi-
walled carbon nanotubes (MWCNTSs) [46], and graphene [55] have been
employed to fabricate Pt-free composite counter electrodes in DSSCs. These
composites provide a high specific surface area and continuous charge
transport pathways, thus reducing series resistance at the counter
electrode/redox electrolyte interface and improving charge transfer.
Consequently, they exhibit higher electrocatalytic activity and electrical
conductivity compared to pure g-CN electrodes.

Summarizing the findings: PANI/g-CN hybrids synthesized by in situ
polymerization of aniline monomers on g-CN under ultrasonic irradiation
yielded a PCE of 1.79% [43]. In another study, a g-CN/MWCNT composite
achieved a PCE of 6.34% [46]. CCB and graphene-based composites
reached 5.09% [42]. and up to 7.46% [55] respectively. Thus, supporting
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pure g-CN with conductive materials is a promising strategy. Nevertheless,
these PCE values still fall short of the ~12% achieved with Pt-based DSSCs
[56].

Moreover, based on current findings, completely eliminating Pt appears
impractical; instead, incorporating Pt in small amounts to reduce costs and
prevent corrosion is a more realistic approach. Additionally, metals play a
critical role in enhancing the catalytic activity of g-CN. Its unique structure,
rich in nitrogen lone pairs, facilitates efficient metal loading, which can
modify its electronic structure and improve photocatalytic performance [57].
Consequently, research on metal/g-CN composites has become increasingly
popular.

Pan et al. [58] theoretically predicted through primary calculations that
metal atoms (such as Pd, Pt, etc.) could be incorporated into g-CN nanotubes
(NTs). The incorporation of metal atoms effectively enhances the
photoinduced carrier mobility of g-CN, narrows its bandgap, and further
extends its visible light response range. Additionally, due to the interaction
between negatively charged nitrogen atoms in g-CN and cations, g-CN
exhibits a strong ability to capture cations. The integration of metals into the
g-CN framework also enables electron enrichment in g-CN, thereby
significantly improving its catalytic capabilities [57].

Shiraishi et al. [59] successfully deposited platinum nanoparticles (NPs)
onto the surface of g-CN through a high-temperature annealing process,
resulting in tightly bound Pt NPs on the g-CN surface. This strong
interaction notably facilitated the seamless migration of photoinduced
electrons from g-CN to the Pt NPs. As a result, Pt/g-CN was employed as an
efficient photocatalyst for hydrogen production, achieving high catalytic
activity. The addition of Pt in NP form not only significantly reduced costs
but also improved electrocatalytic activity.

Nanoparticles, typically ranging in size from 1 to 100 nm, may exhibit
size-dependent unique physical and chemical properties [60]. Owing to their
increased surface area, nano-sized particles show distinctive characteristics.
Among these, noble metal nanoparticles such as Au, Ag, Pt, and Pd display
remarkable properties and are extensively utilized in electrocatalysis,
antibacterial applications, electrochemical sensing reactions, biotechnology,
and electronics [61]. Notably, Pt, with a high melting point of 1769 °C, is
utilized for its resistance to corrosion and chemical attack, and acts as an
efficient catalyst in various hydrogenation reactions (e.g., hydrogenation of
o-chloronitrobenzene and cinnamaldehyde) [61].

Although the incorporation of Pt NPs enhances the conductivity and
electrocatalytic activity of g-CN and provides partial corrosion resistance,
further improvements are necessary to maximize conductivity and prevent
corrosion, especially for DSSC (Dye-Sensitized Solar Cell) applications.
Preventing the corrosion of metal components within the DSSC structure is
critical. Consequently, researchers are not only focusing on increasing PCE
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(Power Conversion Efficiency) but also developing multifunctional,
adjustable corrosion-inhibiting materials with broad application potential.
These materials must meet durability, stability, chemical resistance, and
optical activity requirements.

In this context, electroconductive polymers (ECPs) have attracted
attention. Among ECPs, polyaniline (PANI) stands out due to its catalytic
and electrochemical performance. PANI’s highly branched structure,
excellent processability, high conductivity, large surface area, and chemical
stability make it attractive for applications such as water purification and
corrosion protection [62].

When doped with inorganic acids (e.g., hydrochloric acid) or organic acids
(e.g., sulfosalicylic acid), the emeraldine base (EB) form of PANI can be
easily converted into the emeraldine salt (ES) form, exhibiting increased
conductivity due to protonation of the imine nitrogen atoms [63]. The
partially oxidized ES form of PANI is also catalytically active, with low
bandgap energy (Eg) and high electron transfer performance, attributed to
the formation of polaron and bipolaron bands [62]. In addition, the redox-
active structure of PANI, consisting of oxidation (benzoquinone) and
reduction (benzene) units, as well as its excellent environmental stability and
71— conjugated system, makes it suitable for corrosion-resistant coatings and
modification of semiconductor photocatalytic activity [64, 65].

Beyond these applications, PANI is considered the most notable material
among conductive polymers to potentially replace Pt as the counter electrode
in DSSC devices. Its simple synthesis, significant catalytic activity, and good
environmental stability make it an attractive alternative. However, PANI,
being an organic semiconductor, has inherently limited charge transport
capability. Thus, pure PANI still falls short of competing with Pt in terms of
electrocatalytic activity and long-term stability, resulting in lower energy
conversion efficiencies. Therefore, combining PANI with carbon-based
materials or other nanomaterials is proposed as an effective strategy to
enhance its conductivity and improve the overall performance of DSSC
systems [66].

While this study serves multiple objectives, its principal aim is not to
entirely replace the Pt counter electrode with an alternative material, but
rather to enable the cost-effective fabrication of dye-sensitized solar cells
(DSSCs) by reducing the amount of Pt used—without compromising its
exceptional properties—thereby maintaining high catalytic activity and
electrical conductivity. Given that the corrosive Is7/I” redox electrolyte in
DSSC configurations causes corrosion and dissolution of the Pt counter
electrode, leading to reduced long-term stability and significant economic
losses, mitigating these effects is critical for sustained device performance.

In this context, the rational selection of materials and an accurate
understanding of bandgap engineering are pivotal for the development of
efficient electrocatalysts. As evidenced in the current literature, the complete
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exclusion of Pt from DSSC systems remains unfeasible under present
technological constraints. Although corrosion of the Pt counter electrode
negatively impacts the stability of DSSCs, no alternative material has yet
demonstrated a comparable combination of electrocatalytic activity,
electrical conductivity, and corrosion resistance against the I;/I" redox
couple.

Therefore, to address these interdependent challenges without
compromising device efficiency, there is an urgent need for a smart counter
electrode coating that can suppress corrosion while preserving catalytic
performance. Within this framework, the present study proposes the design
and application of a PtNP/PANI/g-CN composite structure aimed at
enhancing the long-term stability of the Pt counter electrode and overcoming
corrosion-related limitations in DSSCs.

Individually, each component—Pt, g-CN, and PANI—offers distinct
advantages and inherent drawbacks when employed as counter electrode
materials. While converting Pt into nanoparticle form (PtNPs) may
effectively reduce both cost and corrosion, the accompanying decrease in Pt
content could impair photocatalytic efficiency. The incorporation of
graphitic carbon nitride (g-CN), which exhibits strong electrocatalytic
activity, can mitigate this issue by facilitating the Is/I" reduction reaction
and thereby enhancing short-circuit current. However, g-CN suffers from
high charge carrier recombination rates and inherently low electrical
conductivity. These limitations can be addressed by integrating it with
PtNPs, which possess excellent electrical conductivity. Yet, due to the
inadequate optical absorption of PtNP and g-CN in the visible spectrum, the
addition of polyaniline (PANI)—a dark blue conductive polymer—can
further augment the system by improving corrosion resistance, enhancing
conductivity, and increasing light absorption. Moreover, the PtNP/PANI/g-
CN composite is expected to increase the effective surface area, thereby
further contributing to the overall device performance. The synergistic
interplay among these three materials allows each to offset the limitations of
the others, resulting in a structurally and functionally optimized counter
electrode.

Previous studies have also demonstrated that power conversion efficiency
(PCE) in DSSCs does not scale linearly with the thickness of the Pt film. In
fact, reasonably high efficiencies can be achieved using ultrathin Pt layers
(e.g., ~2 nm), suggesting that reductions in Pt content can partially alleviate
production costs [25]. However, at such thicknesses, the Pt film becomes
nearly transparent, limiting its ability to reflect photons back into the
photoactive layer, which reduces light harvesting efficiency. Additionally,
the reduced surface area associated with thinner films contributes to a
decline in PCE. Conversely, the incorporation of PtNPs—as opposed to the
use of standalone PANI or g-CN—offers potential advantages by increasing
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both surface area and photocatalytic activity while concurrently enhancing
corrosion resistance [61].

The synthesis of two-dimensional graphitic carbon nitride (g-CN) as a
multifunctional protective layer in DSSCs has been reported due to its high
nitrogen content and enhanced electrocatalytic activity, which improves the
Is7/I" reduction reaction and consequently increases the short-circuit current
[43]. However, the intrinsic electrocatalytic performance of g-CN is limited
by its poor electrical conductivity. To overcome this limitation, the
incorporation of conductive materials such as metal dopants, conducting
polymers, or carbon black composites into the g-CN matrix has been
proposed as an effective strategy to facilitate electron transport and improve
the electrocatalytic activity of g-CN [43].

Among the available options, combining g-CN with polyaniline (PANI)
offers the advantage of not only enhancing electrical conductivity but also
extending the material's optical response in the visible light region.
Moreover, given that the electrical conductivity of PANI can be further
improved by hybridizing it with conductive nanomaterials, the inclusion of
platinum nanoparticles (PtNPs) into the system is expected to provide
additional benefits. Specifically, PtNPs can enhance the electrocatalytic
activity of PANI and concurrently contribute to corrosion resistance within
the electrode architecture. This is because the catalytic activity of Pt can be
maximized when employed in nanoparticulate form, owing to its high
surface area-to-volume ratio and distinctive surface plasmon resonance
properties [43].

Furthermore, PtNPs have been shown to significantly improve the photo-
induced charge carrier mobility of g-CN, reduce its bandgap, and broaden its
visible light absorption range. Consequently, the integration of PtNPs helps
compensate for the inherently low electrical conductivity of g-CN, thereby
restoring and even enhancing its electrocatalytic activity [48]. This approach
not only facilitates a substantial reduction in overall material costs due to the
decreased amount of Pt required but also enables the recovery of
electrocatalytic performance, which is crucial for high-efficiency DSSC
operation.

In the PtNP/g-CN composite structure, the incorporation of metal
nanoparticles has the potential to alter the electronic structure of the
semiconductor photocatalyst—particularly the band structure—thereby
improving photocatalytic performance. Additionally, polyaniline (PANI),
due to its excellent processability, high electrical conductivity, large surface
area, and chemical stability [62] plays a critical role in enhancing electron
transport. Within the composite matrix, PANI contributes by providing a
high specific surface area and continuous charge transport pathways, which
reduces the series resistance at the interface between the counter electrode
and the redox electrolyte, ultimately facilitating more efficient charge
transfer.
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Compared to pure g-CN, such a composite electrode structure exhibits
significantly improved electrocatalytic activity and electrical conductivity.
This improvement is crucial, as pristine g-CN suffers from several intrinsic
limitations, including low specific surface area, high charge carrier
recombination rate, poor electrical conductivity, and insufficient optical
absorption in the visible region. These drawbacks result in high interfacial
resistance at the electrode/electrolyte interface during electrochemical
reactions, thereby reducing catalytic activity [19]. To overcome these issues,
the integration of PtNPs and PANI into the g-CN framework is proposed,
enabling the formation of composite materials with tailored optoelectronic
properties.

In summary, the primary objective of this study is to develop a novel
PtNP/PANI/g-CN composite counter electrode for DSSCs that addresses the
critical challenges of corrosion and high production cost. This composite
structure is expected to offer a more efficient, cost-effective, and sustainable
solution for solar energy conversion, thereby removing key obstacles to the
commercialization of DSSC technology. By introducing an innovative
approach to counter electrode design, this project aims not only to enhance
DSSC performance and economic viability but also to contribute to the
broader adoption of renewable energy technologies. The successful
implementation of this composite system could mark a significant
advancement in DSSC development, potentially reducing reliance on fossil
fuels and conventional silicon-based solar cells.

II. MATERIALS AND METHOD

As part of the project, coatings with dual-function anti-corrosive and
electro-photo catalytic activity will be prepared using Pt nanoparticles
combined with PANI and g-CN. These coatings will be used as the back
electrode in DSSC structures. The performance evaluations of the coatings
will be conducted based on electrical and electrochemical test results,
including short-circuit current (ISC), open-circuit voltage (VOC), power
conversion efficiency (PCE), as well as electrochemical impedance
spectroscopy (EIS) measurements.

A. g-CN Production

Initially, 24 grams of melamine powder was placed into a quartz boat and
inserted into a tubular furnace. The system was purged and maintained under
a continuous nitrogen gas flow to ensure an inert atmosphere throughout the
process. The temperature of the furnace was gradually increased to 600 °C at
a controlled heating rate of 1 °C per minute. Upon reaching 600 °C, the
sample was held at this temperature for 3 hours to allow complete thermal
polymerization and condensation of the melamine into graphitic carbon
nitride (g-CN). After the dwell time, the furnace was allowed to cool
naturally to room temperature without disrupting the nitrogen environment,
thus preventing any oxidation or contamination of the product.
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The resulting material, which appeared as a pale yellow solid, was
collected and ground thoroughly using a ceramic mortar and pestle to obtain
a fine powder. The final mass of the synthesized g-CN powder was
measured to be 9.82 grams. This procedure yielded high-purity g-CN with a
layered structure, making it suitable for further applications in the fabrication
of composite electrodes and photocatalytic materials.

B. Synthesis Process of Nanoparticle-Modified PANI

The g-CN production was carried out via a one-step polymerization
reaction. In the synthesis process, the materials were combined in the
sequence described below. 5 g of melamine was calcined in an atmosphere
of nitrogen gas at 600 °C for 6 hours (at a heating rate of 2°C/min). The
yellow-colored solid product, approximately 3 g in weight, was obtained and
then powdered to produce g-CN. Following this, 0.01 g of the synthesized g-
CN powder was added to 10 mL of distilled water and subjected to
sonication for 5 minutes. Subsequently, 1 mL of the homogeneous g-CN
solution was added to 30 mL of a 7 M NaOH solution, along with 0.5 mL of
K,PtCly at two different molarities (0.1 M and 0.2 M). The reaction was then
stirred magnetically under ambient conditions.

To prevent the crystallization of platinum hydroxide, the K,PtCls solution
was added all at once. After 30 minutes of stirring, the mixture was cooled to
0 °C, and 0.5 mL of aniline monomer was added. The color change (from
brown to dark green) was observed, indicating the reaction between the
aniline monomer and Pt,". The reaction was allowed to continue for another
30 minutes to complete the reaction between the aniline monomer and Pt,".
Afterward, 10 mL of L-cysteine at different molarities (0.5 M, 0.8 M, and 1
M) was added to the reaction mixture, and the temperature was gradually
increased to 60 °C at a heating rate of 1.5 °C/min.

L-cysteine, which is a ligand that binds to Pt," through a coordination
bond, was used as a reducing agent to enhance the reduction efficiency of
Pt," precursors to metallic Pt [67]. To obtain the optimum value and best
performance, a total of six different types of nanocomposite structures were
synthesized by varying the amounts of K,PtCly and L-cysteine, optimizing
the synthesis process.

The reaction was allowed to continue for an additional 60 minutes to
complete. Afterward, the reaction mixture was centrifuged at 4000 rpm for
20 minutes to separate the product from the solution. The resulting product
was then dried in a vacuum oven at 60 °C for 24 hours, yielding 8 g of the
powdered nanocomposite.

The prepared nanocomposite powder was dissolved in 1-Methyl-2-
Pyrrolidone to achieve a concentration of 100 mg/10 mL and was then used
in the coatings.

C. Counter Electrode and DSSC Production Process
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Commercially purchased Fluorine-doped Tin Oxide (FTO) glass substrates
(7 Q/cm?) were first washed with detergent, then rinsed with ultra-pure
water, and dried under nitrogen gas. For the electrophoretic deposition, the
PtNP/PANI/g-CN solution prepared with 1-Methyl-2-Pyrrolidone, as
described earlier, was used. FTO-coated glass substrates were placed in
parallel within the solution, and a constant voltage of 200 V was applied for
2 hours using a power supply to complete the film deposition on the FTO
surface.

After the cleaning procedure, the FTO-coated glass substrates were treated
with TiO; paste (Ti-Nanoxide D/SP), applying a 5x5 mm? square active area
onto the FTO by using the doctor blade technique. Following the preparation
of the photoanode, the substrates were gradually heated before TiCl4
treatment, and the first sintering step was completed at 450°C for 30
minutes. A 40 mM aqueous solution of TiCls was prepared and heated to
70°C. The TiO, photoelectrodes were then treated with TiCls for 30 minutes.
Afterward, the photoelectrodes were removed from the solution, washed
with deionized water and ethanol, and subjected to a second sintering
process, where they were gradually heated again at 450°C for 30 minutes.

After the sintering process, the photoelectrodes were allowed to cool down
to approximately 50-60°C. The photoelectrodes were then immersed in a 0.5
mM ethanol solution of Ruthenizer 535-bisTBA (N719) dye sensitizer,
prepared with 10 times the mass of chenodeoxycholic acid, and kept in the
dark for 18 hours at room temperature.

The prepared back electrodes were then combined with the
photoelectrodes using a sealing gasket of 60 pm thickness, and the sandwich
assembly of the two electrodes was injected with HI-30 liquid electrolyte,
containing the iodide/triiodide (Is/I) redox couple. To minimize
experimental errors, three samples were prepared for each series, and the
experiments were conducted with triplicate samples..

IV.EXPERIMENTAL RESULTS

A. Performnace Parameters of the Base Structured DSSCs

In this research the characterization of the produced DSSCs was initially
carried out by examining the parameters that make up the structure.
Subsequently, a series of experiments were conducted to determine the
photovoltaic performance characteristics, and the obtained results were
evaluated.

The results obtained showed in Table 1 and Fig. 2, that in DSSCs using a
PANI back electrode, a higher current density was achieved compared to
DSSCs using a Pt back electrode. However, due to the relatively lower open-
circuit voltage (VOC), the efficiency was also relatively lower. In DSSCs
produced with a PANI back electrode, the VOC value was the lowest, while
ISC was the highest. On the other hand, when g-CN was used, the opposite
trend was observed, with the highest VOC value but the lowest ISC among
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all structures. Therefore, combining these two structures is likely to result in
an average value. However, the addition of PtNP to the structure is expected
to significantly improve the current-voltage performance and maximize the
PCE value. This is because PtNPs play a role in increasing conductivity and
reducing charge transfer resistance, while g-CN provides active sites for ion
adsorption in the synthesized nanocomposite structure, and PANI supports
Pt by initiating redox reactions between the electrolyte and PANI.

Table 1. Experimental performance parameters for Pt, PANI and g-CN counter

electrode based DSSCs
Counter VOC (mV) JSC FF (%) n(%)
Electrode (mA/cm2)

Pt 720 19 52 9.14
PANI 666 16.2 58 6.3
g-CN 710 11.87 54 4.7
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Fig. 2 Photovoltage vs. photocurrent graphs of base structured dye-sensitized solar
cells

The photovoltaic performance parameters of the DSSCs fabricated with
different counter electrodes — namely Pt, PANI, and g-CN are summarized
in Table 1. Analyzing the open-circuit voltage (Voc), short-circuit current
density (Jsc), fill factor (FF), and power conversion efficiency (1)), several
important trends can be identified.

The conventional Pt counter electrode exhibits the highest overall
performance among the tested electrodes, with a Voc of 720 mV, a Jsc of 19
mA/cm?, a FF of 52%, and a maximum power conversion efficiency of
9.14%. This outcome aligns with Pt’s well-established superior catalytic
activity and excellent electrical conductivity, enabling efficient charge
transfer at the counter electrode/electrolyte interface.
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On the other hand, when PANI is employed as the counter electrode, the
device shows a noticeable decrease in Voc (666 mV) and Jsc (16.2 mA/cm?)
compared to Pt, but an improvement in the fill factor (58%). Despite the
higher FF, the overall efficiency (1) drops to 6.3%. This behavior can be
attributed to PANI's good conductivity and flexible structure, which
facilitate charge transport; however, its catalytic activity toward the L7/
redox couple is inherently lower than that of Pt, thus resulting in reduced
voltage and current density.

Meanwhile, the DSSCs based on g-CN electrodes present a relatively high
Voc of 710 mV — close to that of Pt — but suffer from a significantly
reduced Jsc (11.87 mA/cm?) and a lower FF (54%), culminating in a modest
PCE of 4.7%. These results are consistent with the known characteristics of
g-CN: while it provides a favorable energy band structure and a relatively
high photovoltage, its low electrical conductivity and high recombination
rates limit efficient charge transport and current generation.

Fig. 3 depicts the independently determined I-V curves of PtNP/PANI/g-
CN and Pt counter electrode based DSSCs. The study highlights that
PtNP/PANI/g-CN exhibited a maximum efficiency of 10.05%, surpassing Pt,
which achieved 9.14%. These results underscore significant advancements in
dye-sensitized photovoltaic technology, demonstrating the effectiveness of
PtNP/PANI/g-CN counter electrode in enhancing device efficiency. The
findings suggest promising prospects for further optimizing DSSCs and
advancing their performance in photovoltaic applications.

Photocurrent (A)

0,0 01l 02 03 04 Qs 06 07
Photovoltage (V)

Fig. 3 Photovoltage vs. photocurrent comparison of the Pt and PtNP/PANI/g-CN
counter electrodes for dye sensitized solar cells
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B. Long-term stability Tests

A key distinguishing feature of the PtNP/PANI/g-CN composite electrodes
is their exceptional long-term stability under operational conditions. To
rigorously evaluate their durability, systematic stability assessments were
conducted over a twelve-month period, with performance metrics recorded
at both weekly and monthly intervals and the results are shown in Table 2
and Fig 4.

Table 2. Experimental performance parameters of DSSCs

Counter Voc (mV) Jsc (mA/cm?) FF (%) (%)
Electrode
Day Day | Day Day Day | Day | Dayl | Day
1 365 1 365 1 365 365
Pt 720 583 19 12 52 50 9.14 4.32
PINP/PANI/g- | 720 708 22 17 66 61 10.05 | 7.98

CN

PCE (%)
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Fig. 4 One-year monthly stability analysis of the power conversion efficiency of
DSSCs (Pt (blue) and PtNP/PANI/g-CN (red))

The results clearly demonstrate that DSSCs incorporating PtNP/PANI/g-
CN maintained approximately 80% of their initial photovoltaic efficiency
after one year of continuous evaluation. Specifically, these cells retained an
open-circuit voltage (Voc) of 708 mV, a short-circuit current density (Jsc) of
17 mA/cm?, and a power conversion efficiency (PCE) of 7.98%.

In sharp contrast, reference DSSCs employing conventional platinum (Pt)
electrodes exhibited significant performance deterioration over the same
period. Their Voc dropped to 583 mV, Jsc decreased to 12 mA/cm?, and PCE
was reduced to 4.32%, highlighting the inherent limitations of bare Pt
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electrodes when exposed to the corrosive Is/I° redox electrolyte
environment. These comparative results underscore the critical advantage
offered by the PtNP/PANI/g-CN composite, not only in mitigating
corrosion-related degradation but also in maintaining efficient charge
transfer dynamics at the electrode/electrolyte interface.

C. EIS Analysis Results of DSSCs

The Nyquist plots of the DSSCs were obtained using a VersaSTAT 3
Potentiostat/Galvanostat under dark conditions, at room temperature, and
within a Faraday cage. An AC oscillator signal with an amplitude of 10 mV
was applied, and the frequency range was set between 10 mHz and 1 MHz
for all samples. From the Nyquist plots, the equivalent circuit parameters of
the DSSCs were extracted and presented in Fig. 5.
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Fig. 5. Nyquist plots of the Pt and PtNP/PANI/g-CN counter electrodes for dye
sensitized solar cells
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As illustrated in Fig. 5, the Nyquist diagrams exhibit three distinguishable
semicircles. The first semicircle in the high-frequency region corresponds to
the charge transfer resistance (Rct) at the counter electrode. The second
semicircle, located in the middle-frequency range, is associated with the
resistance at the TiOz/dye/electrolyte interface (Rpt), while the third
semicircle in the low-frequency region represents the diffusion process
within the electrolyte.

Charge transfer parameters were derived by fitting the Nyquist plots using
the Z-View software, based on the equivalent circuit model depicted in the
inset of Fig. 4. A close examination of Fig. 5 reveals that the DSSC with the
PtNP/PANI/g-CN based counter electrode exhibits the lowest charge transfer
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resistance (Rct) and the lowest series resistance among all the tested
configurations, highlighting its superior electrical performance.

V. RESULTS AND DISCUSSION

This study aimed to investigate the influence of counter electrode
materials—both in their pure and composite forms—on the photovoltaic
performance of dye-sensitized solar cells (DSSCs). In particular, a novel
composite material, PINP/PANI/g-CN, which has not previously been
reported in the DSSC literature, was synthesized and implemented as a
counter electrode. The photovoltaic characteristics of the fabricated DSSCs
were systematically evaluated and compared to standard counterparts
employing conventional Pt, PANI, and g-CN electrodes.

Among the most notable features distinguishing the PtNP/PANI/g-CN
composite electrodes from traditional materials is their outstanding long-
term operational stability. To rigorously assess this property, a series of
extended stability tests were carried out over a 12-month period, with data
collected at both weekly and monthly intervals. The DSSCs incorporating
PtINP/PANI/g-CN celectrodes retained approximately 80% of their initial
power conversion efficiency (PCE) after one year, maintaining a VOC of
708 mV, a JSC of 17 mA/cm?, and a PCE of 7.98%. In contrast, DSSCs with
conventional Pt electrodes exhibited significant performance degradation,
with the PCE dropping to just 4.32% by the end of the test period. The
results revealed that the DSSCs incorporating PtNP/PANI/g-CN electrodes
were able to retain approximately 80% of their initial photovoltaic
performance after one year.

The superior stability observed in the PtNP/PANI/g-CN-based devices can
be attributed to the synergistic integration of its components: Pt
nanoparticles provide high catalytic activity and electrical conductivity;
PANI contributes excellent charge transport pathways due to its high
intrinsic conductivity and flexible polymeric nature; and g-CN enhances
surface area and offers additional active sites for redox reactions. The
combination of these materials forms a robust and highly conductive
network that effectively resists electrochemical degradation over prolonged
operational periods.

Collectively, these findings suggest that PtNP/PANI/g-CN nanocomposite
electrodes present a highly promising alternative to conventional Pt
electrodes, offering enhanced longevity, stability, and photovoltaic
performance. Such advancements represent a significant step toward the
development of economically viable, durable, and commercially scalable
DSSC technologies.
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